
G5nbPIPE User’s Guide

for GRAPE-7 software package version 2.1

K & F Computing Research Co.
E-mail: support@kfcr.jp

Abstract

In this document, we give a description of G5nbPIPE, a backend logic for GRAPE-
7 add-in card. G5nbPIPE is an extention of G5PIPE. It calculates gravitational forces
among particles as well as G5PIPE does. In addition, it creates lists of neghbor particles.
This document focuses on functions newly added to G5nbPIPE. For usage of functions
inherited from G5PIPE, see G5PIPE User’s Guide.

Contents

1 Difference from G5PIPE 2

2 Usage of G5nbPIPE 2
2.1 Compilation and Linkage . 2
2.2 A Functionality Test Program . 3
2.3 Environment Variables . 3
2.4 Running Sample Programs . 3
2.5 Difference from GRAPE-5/GRAPE-6A . 4

3 Reference for G5nbPIPE Library Functions
(only for functions added to G5PIPE library) 5
3.1 Synopsis . 5

3.1.1 Standard Functions in C . 5
3.1.2 Primitive Functions in C . 5
3.1.3 Standard Functions in Fortran . 6
3.1.4 Primitive Functions in Fortran . 7

3.2 Description . 8
3.2.1 Standard Functions in C . 8
3.2.2 Primitive Functions in C, Functions in Fortran 9

4 Examples 10
4.1 An example in C . 10

1

1 Difference from G5PIPE

G5nbPIPE is an extention of G5PIPE. It calculates gravitational forces among particles
as well as G5PIPE does. In addition, it creates lists of neghbor particles and stores them
into its internal memory, (shown in figure 1 as NB Memory). The peak performance of
G5nbPIPE is lower than that of G5PIPE. This is because hardware resources required to
implement one pipeline logic increased due to the additional function, resulting decrease
of the number of pipelines, Npipe, integrated into the FPGA.

-th particle

-th particle

Input
Buffer

Pipeline 1

i

j
Memory

Unit

-th forcei

Output
Buffer

NB Memory 1

Pipeline 2

NB Memory 2

NB Memory

Pipeline Npipe

Npipe

Figure 1: A schematic of G5nbPIPE.

Table 1 summaryises specification of G5nbPIPE. Figures per add-in card are shown in
the table. The peak performance is, for example, that of one FPGA chip multiplied by the
number of chips on the card. The number of pipelines is that of one FPGA multiplied by
the number of chips. The figures shown are subject to change, and it is not recommended
to hardcode them into your application program.

Table 1: G5nbPIPE Specifications
Peak performance Pipeline Memory unit size NB memory size

(Gflops) number clock cyvle(MHz) (# of particles) (# of particles)
Model 100 71 14 133 4095 24
Model 300 182 48 100 12285 72
Model 600 365 96 100 24570 144
Model 800 731 26 185 32764 96

In the rest of this document, we focuses on functions newly added to G5nbPIPE. For
usage of functions inherited from G5PIPE, see G5PIPE User’s Guide.

2 Usage of G5nbPIPE

2.1 Compilation and Linkage

G5nbPIPE can be conroled via G5PIPE library functions. This library includes func-
tions to handle lists of neighbor particles, as well as all functions included in G5PIPE

2

library. In order to use the library in your own application program, you need to include
g5nbutil.h in your code. You also need to link G5nbPIPE library (libg75nb.a), HIB li-
brary (libhib.a), and C-language standard math library (libm.a). Following line shows
an example of compilation command:

cc -o foo foo.c -L/usr/g7pkg/lib -I/usr/g7pkg/include -lg75nb -lhib -lm

2.2 A Functionality Test Program

You can use a command ./scripts/checknb.csh in order to check functionallity of
G5nbPIPE. Usage of checknb.csh is the same as check.csh, which is described in
GRAPE-7 Installation Guide section 3.2.

The command checknb.csh runs many-body simulations in the same way as check.csh
does. The final distribution of all particles for each run is saved to a temporary file. Then
the file is compared with its corresponding in /usr/g7pkg/direct/snapshots. Further-
more, at the final step of the run, all neighbor particles of all particles are also saved to
a temporary file, and compared with its correnspondig.

The test would take several tens of minutes. If you see any error message during the
test, please make a contact with us at support@kfcr.jp.

2.3 Environment Variables

Environment variables supported by G5nbPIPE library is the same as that supported by
G5PIPE library.

2.4 Running Sample Programs

The GRAPE-7 software package includes following sample codes:

/usr/g7pkg/direct/direct

/usr/g7pkg/direct/directa

/usr/g7pkg/direct/directmc

/usr/g7pkg/direct/directtest

/usr/g7pkg/vtc/vtc

/usr/g7pkg/directf77/direct

/usr/g7pkg/direct/directnb

/usr/g7pkg/direct/directnba

Here we assume the package is installed in /usr/g7pkg. In the directory /usr/g7pkg/direct,
you can find direct, directa, directmc, directtest, directnb and directnba.

Only two codes, directnb and directnba perform creation of neighbor-particle lists.
See G5PIPE User’s Guide for description of other codes.

The code directnb calculates gravitational force among paritcles in the same way as
directtest does. At the same moment, it creates lists of particles which reside nearby
i-particles. directnba is the same as directnb except that it shows a tiny animation.

3

Particles listed up as neighbor of an i-particle which has index 0, are shown in red. Other
particles are shown in yellow.

In directnb.c, you can find a function calc gravity5(). In this function, creation of
neighbor-particle lists and calculation of gravitational forces are performed simultaneously.
Sample codes in G5PIPE User’s Guide section 5.3 and a function calc gravity4() in
directtest.c may help your understanding of this function.

2.5 Difference from GRAPE-5/GRAPE-6A

Most functions in G5nbPIPE library provided in order to handle neighbor-particle lists
are the same as those of legacy GRAPE-5 library (libg5a.a) and GRAPE-6A library
(libg65.a). Exceptions are listed below:

• The neighbor-particle memory of G5nbPIPE is smaller than that of GRAPE-5.
Its size, i.e., the maximum number of neighbor particles which can be stored for
each i-particle, is obtained by g5 get nbmemsize(). The number returned by this
function is summarised in table 1. However, the number should not be hardcoded
into application programs, since it is subject to change.

• The returning value of g5 get neighbor list() is changed. In the legacy GRAPE-
5 library, the function always returns length of the neighbor-particle list. In G5nbPIPE
library, the returned length is multiplied by −1, if the list is overflown. The behavior
of the function in old and new libraries are the same, if the list is not overflown.

• A new function g5 set nbmemsize() is added. sets the maximum length of a
neighbor-particle list. After calling this function, only a limited part of the neighbor-
particle memory is transfered to the host computer. This function can be used to
reduce unnecessary data transfer from GRAPE-7 to the host computer, if the num-
ber of neighbor particles you need to obtain is known to be smaller than the size of
neighbor-particle memory.

4

3 Reference for G5nbPIPE Library Functions

(only for functions added to G5PIPE library)

G5nbPIPE library functions are programming interface to manipulate G5nbPIPE. The
library includes functions to handle lists of neighbor particles, as well as all functions
included in G5PIPE library. In the following, only functions which are used to handle
lists of neighbor particles are described. For description of functions included in G5PIPE
library, see G5PIPE User’s Guide (/usr/g7pkg/doc/g5user.pdf).

3.1 Synopsis

3.1.1 Standard Functions in C

The following functions provide high-level programming interface to manipulate G5nbPIPE.
The functions described here hide the number of the cards to the user. This approach
simplifies the user program. As long as user controls G5nbPIPE via these functions, the
user can handle multiple cards as a single object. The user does not need to care about
how many cards are attached to the host computer.

void g5_set_h_to_all(double h);

void g5_set_h(int ni, double *h);

int g5_read_neighbor_list(void);

int g5_get_neighbor_list(int ip, int *list);

int g5_get_nbmemsize(void);

int g5_set_nbmemsize(int size);

3.1.2 Primitive Functions in C

The following functions provide low-level programming interface to manipulate individual
G5nbPIPE configured in each GRAPE-7 card. For each invocation of these functions, user
need to specifies the device ID (devid) explicitly. The device ID of each GRAPE-7 card is
obtained using /usr/g7pkg/hibutil/lsgrape utility. See GRAPE-7 Installation Guide
for its usage. Meaning of the arguments other than devid are the same as those of
corresponding standard function described in the previous section.

void g5_set_h_to_allMC(int devid, double h);

void g5_set_hMC(int devid, int ni, double *h);

int g5_read_neighbor_listMC(int devid);

int g5_get_neighbor_listMC(int devid, int ip, int *list);

int g5_set_nbmemsizeMC(int devid, int size);

int g5_get_nbmemsizeMC(int devid);

5

3.1.3 Standard Functions in Fortran

The following subroutines and functions provide programming interface in Fortran. They
provide the same functionality as their counterparts in C.

subroutine g5_set_h_to_all(h)

real*8 h

subroutine g5_set_h(ni, *h)

integer ni

real*8 h(*)

function g5_read_neighbor_list()

integer g5_read_neighbor_list

function g5_get_neighbor_list(ip, *list)

integer ip

integer list(*)

integer function g5_get_neighbor_list

function g5_get_nbmemsize()

integer g5_get_nbmemsize

function g5_set_nbmemsize(size)

integer size

integer g5_set_nbmemsize

6

3.1.4 Primitive Functions in Fortran

The following subroutines and functions provide programming interface in Fortran. They
provide the same functionality as their counterparts in C.

subroutine g5_set_h_to_allMC(devid, h)

integer devid

real*8 h

subroutine g5_set_hMC(devid, ni, *h)

integer devid

integer ni

real*8 h(*)

function g5_read_neighbor_listMC(devid)

integer devid

integer g5_read_neighbor_listMC

function g5_get_neighbor_listMC(devid, ip, *list)

integer devid

integer ip

integer list(*)

integer g5_get_neighbor_listMC

function g5_get_nbmemsizeMC(devid)

integer devid

integer g5_get_nbmemsizeMC

function g5_set_nbmemsizeMC(devid, size)

integer devid

integer size

integer g5_set_nbmemsizeMC

7

3.2 Description

3.2.1 Standard Functions in C

void g5 set h to all(double h) sets a neighbor radius h. When you perform a force
calculation after setting the radius, a list of neighbor particles is created for each i-
particles. A neighbor of an i-particle is defined as a particle that resides within the
distance h from the i-particle. You can obtain the list using g5 read neighbor list()

and g5 get neighbor list().

void g5 set h(int ni, double *h) sets neighbor radii h[0]...h[ni−1] for ni i-particles.
The number ni must not exceed the value returned by g5 get number of pipelines().

int g5 read neighbor list(void) read neighbor-particle lists into a library-internal
work space. This function returns 0 or 1. The value 0 indicates that all neighbor-particles
of all ni i-particles set by g5 set xi(ni, xi) are successfully obtained. The returning
value 1 indicates that some of the neighbor particles are lost since the neighbor-particle
memory has overflown. Use g5 get neighbor list() to identify the i-particle whose
neighbor-particle list has overflown.

This function call must precede g5 get neighbor list().

int g5 get neighbor list(int ip, int *list) returns length of the neighbor-particle list,
nip, for the ip-th i-particle set by g5 set xi(ni, xi). The value is multiplied by −1 and
−nip is returned, if the list has overflown. That is, the sign of the returned value tells if
the list has overflown or not, and the absolute value tells the number of neighbor particles
obtained.

Indices of the neighbor particles are returned to list[0]...list[nip−1]. These indices
are valid even if the list has overflown. Note that the indices returned to list indicate
positions in the array mj and xj passed to g5 set jp(adr, nj, mj, xj). On the other
hand, the value ip indicates a position in the array xi passed to g5 set xi(ni, xi).

G5 read neighbor list() must be called before calling this function.

int g5 get nbmemsize(void) returns the maximum length of a neighbor-particle list.
Table 1 summarises the length for each model.

In the case of Model 300 and Model 600, multiple neighbor-particle memories in multi-
ple pFPGAs are used to store neighbor particles for a single i-particle. Since each pFPGA
can store up to 24 neighbors for one i-particle, Model 300 (which has 3 pFPGAs) and
Model 600 (which has 6 pFPGAs) can store up to 72 and 144 neighbors, respectively.
Note that a neighbor-particle list may overflow even if the number of neighbors is not
exceeding these numbers, since the list may overflow if one of the multiple memories is
overflown.

In a simulation using Model 600, for example, only 25 neighbors may cause an overflow,
if all of them resides in a same memory unit. In order to reduce the occurrence of such
a situation, g5 set jp(adr, nj, mj, xj) sends a j-particle which has index 6n + k to
the memory unit of the k-th pFPGA. Here, n is a non-negative interger and k is one of

8

0, 1, 2, 3, 4 and 5. This shuffles the distinations of j-particles neighboring each other in
the source array xj and mj.

int g5 set nbmemsize(int size) sets the maximum length of a neighbor-particle list.
After calling this function, only the first size neighbor particles are transfered from the
neighbor-particle memory to the host computer (more precisely, the number of transfered
particles is set to a multiple of the number of FPGAs not exceeding size). This function
can be used to reduce unnecessary data transfer from GRAPE-7 to the host computer, if
the number of neighbor particles you need to obtain is known to be smaller than the size
of neighbor-particle memory.

When a size exceeding the size of neighbor-particle memory is given, the maximum
length of the list is set to the size of the memory itself. When a negative size is given, 0
is set as the maximum length. This function returns the maximum length actually set.

3.2.2 Primitive Functions in C, Functions in Fortran

The behavior of all primitive functions is mostly the same as that of standard ones. The
only difference is that the former can individually handle each card. The behavior of all
functions in Fortran is the same as that of C’s.

9

4 Examples

4.1 An example in C

The following code shows how to perform creation of neighbor-particle lists for ni i-
particles. The neighbor particle is defined as a particle that resides within a “neighbor
radius”, h, from the ii-th particle. For the ii-th particle, one list nblist[ii] is created,
which contains indices of the neighbor particles.

#include <stdio.h>

#include "g5util.h"

#define NJMAX (10000) // For simplicity, these numbers are hardcoded

#define NPIPES (300) // in this sample. In practical code, however,

#define NBMEMSIZE (200) // these should be obtained by G5nbPIPE library

// functions.

void main(int argc, char **argv)

{

int i, ii, nj, step, final_step = 100;

double h, eps, size, dt;

static double mj[NJMAX], xj[NJMAX][3], vj[NJMAX][3];

static double a[NJMAX][3], p[NJMAX];

int npipes, nbof;

static int nnb[NPIPES], nblist[NPIPES][NBMEMSIZE];

readnbody(&nj, mj, xj, vj, argv[1]);

g5_open();

size = 10.0;

g5_set_range(-size/2.0, size/2.0, mj[0]);

npipes = g5_get_number_of_pipelines();

h = size*0.01;

for (step = 0; step < final_step; step++) {

g5_set_jp(0, nj, mj, xj);

g5_set_eps2_to_all(eps*eps);

g5_set_h_to_all(h); // set neighbor radius.

g5_set_n(nj);

for (i = 0; i < nj; i += npipes) { // inside this loop,

int ni = npipes; // create neighbor-particle

if (i+ni > nj) { // lists for ni i-particles.

ni = nj-i;

}

g5_set_xi(ni, (double (*)[3])xj[i]);

g5_run();

g5_get_force(ni, (double (*)[3])a[i], p+i);

// read the lists into a library-internal buffer.

10

nbof = g5_read_neighbor_list();

if (nbof == 1) {

fprintf(stderr, "some NB lists overflown\n");

}

for (ii = 0; ii < ni; ii++) {

// obtain the neighbor-particle list of the ii-th i-particle.

nnb[ii] = g5_get_neighbor_list(ii, nblist[ii]);

if (nnb[ii] < 0) {

fprintf(stderr, "NB list of particle %d overflown\n", ii);

nnb[ii] *= -1;

}

fprintf(stderr, "NB list length of particle %d is %d\n", ii, nnb[ii]);

}

/* --- here, do whatever you want to do using the lists. --- */

}

integrate(xj, vj, a, dt, nj);

}

g5_close();

writenbody(nj, mj, xj, vj, argv[2]);

}

11

References

[1] Kawai A., Fukushige T., Makino J., and Taiji M.,
GRAPE-5: A Special-Purpose Computer for N-Body Simulations,
Publ. Astron. Soc. Japan (2000), Vol. 52, p. 659,
http://xxx.lanl.gov/abs/astro-ph/9909116.

Acknowledgment

We would like to thank the following people for bug reports and useful comments: Takayuki
Saitoh at National Astronomical Observatory of Japan, and Junichiro Makino at National
Astronomical Observatory of Japan.

Modification History

version date description author(s)
2.1 11-Feb-2008 Created. AK

12

