
G5PIPE User’s Guide

for GRAPE-7 software package version 2.1

K & F Computing Research Co.
E-mail: support@kfcr.jp

Abstract

In this document, we give a full description of G5PIPE, a backend logic for GRAPE-7
add-in card that calculates gravitational forces among particles.

Contents

1 G5PIPE Overview 2

2 Usage of G5PIPE 3
2.1 Compilation and Linkage . 3
2.2 Environment Variables . 4
2.3 Running Sample Programs . 5
2.4 Difference from GRAPE-5/GRAPE-6A . 7
2.5 Use in Multi-Thread Environment . 8

3 Reference for G5PIPE Library Functions 9
3.1 Synopsis . 9

3.1.1 Standard Functions in C . 9
3.1.2 Primitive Functions in C . 10
3.1.3 Standard Functions in Fortran . 11
3.1.4 Primitive Functions in Fortran . 13

3.2 Description . 16
3.2.1 Standard Functions in C . 16
3.2.2 Primitive Functions in C, Functions in Fortran 20

4 Examples 21
4.1 An example in C . 21
4.2 An example in Fortran . 22
4.3 Another example in C . 24

1

1 G5PIPE Overview

G5PIPE calculates gravitational forces among particles using hardwired pipelines (figure
1). All other calculations, such as time integration of particle orbits, are performed on
the host computer. The pipeline is basically equivalent to that of GRAPE-5[1], except
that it does not calculate gravitational potential nor does neighbor particles.

-th particle

-th particle

Input
Buffer

Pipeline 1

Pipeline 2

Pipeline
i

j
Memory

Unit

-th forcei

Output
Buffer

Npipe

Figure 1: A schematic of G5PIPE.

In the following, we describe a force-calculation procedure using G5PIPE. Here and
hereafter, we denote a particle at which force is evaluated as an i-particle, while a particle
that exerts force as a j-particle.

step 1. The host computer sends a set of j-particles to the memory unit of G5PIPE. The
number of j-particles sent to each G5PIPE should not exceed its memory size.

step 2. The host computer sends a set of i-particles to the input buffer of G5PIPE. The
number of i-particles should not exceed the buffer size.

step 3. The host computer sends a command to indicate start of the runs.

step 4. From the input buffer, Npipe particles are retrieved. Each of them is sent to one of
Npipe pipelines. Here, Npipe is the number of pipelines integrated into one G5PIPE.

step 5. The pipelines start a run. Each pipeline calculates forces from all j-particles stored
in the memory unit to its own i-particle. During the run, a j-particles is broadcasted
to all Npipe pipelines in every clock cycle. Each pipeline accumulates one pairwise
force from a j-particle to its own i-particle into its internal register, in every clock
cycle.

step 6. When a pipeline complete the run, i.e., it finishes accumulation of forces from all
j-particles to its own i-particle, it sends the accumulated force to the output buffer
of G5PIPE. Contents of the buffer are automatically sent back to the host (In the
case of Model 300 and Model 600, outputs from all pFPGAs are accumulated before
they are sent back to the host).

step 7. Step 4–6 is repeated until all i-particles in the input buffer are processed.

2

step 8. Now forces from all j-particles sent to the memory unit at step 1, to all i-particles
sent to the input buffer at step 2, are calculated. The host computer repeats step 2–7
for different sets of i-particles, until all i-particles in the simulation are processed.

step 9. Now forces from all j-particles sent to the memory unit at step 1, to all i-particles
in the simulation, are calculated. The host computer stores these forces to the main
memory, and then process step 1–8 for a different set of j-particles. Obtained forces
are added to the stored forces. The host computer repeats this procedure for yet
another set of j-particles, until all j-particles in the simulation are processed.

Table 1 summaryises specification of G5PIPE. Figures per add-in card are shown in
the table. The peak performance is, for example, that of one FPGA chip multiplied by the
number of chips on the card. The number of pipelines is that of one FPGA multiplied by
the number of chips. The figures shown are subject to change, and it is not recommended
to hardcode them into your application program.

Table 1: G5PIPE Specifications
Peak performance Pipeline Memory unit size

(Gflops) number clock cycle(MHz) (# of particles)
Model 100 101 20 133 4095
Model 300 228 60 100 12285
Model 600 456 120 100 24570
Model 800 827 128 170 32764

2 Usage of G5PIPE

2.1 Compilation and Linkage

G5PIPE can be conroled via G5PIPE library functions. In order to use the library in
your own application program, you need to include g5util.h in your code. You also need
to link G5PIPE library (libg75.a), HIB library (libhib.a), and C-language standard
math library (libm.a). Following line shows an example of compilation command:

cc -o foo foo.c -L/usr/g7pkg/lib -I/usr/g7pkg/include -lg75 -lhib -lm

For complete description of G5PIPE library, see section 3 Reference for G5PIPE Li-
brary Functions. Users of legacy GRAPE-5 library (libg5a.a) and GRAPE-6A library
(libg65.a) might not need full examination of that section. Most of the g5 functions in
the legacy libraries remain unchanged in the new G5PIPE library. Those users should,
however, pay attention to newly added, changed, or obsolete features listed in section 2.4.

3

2.2 Environment Variables

Resource Assignment (Multiple Cards User Only): If you have a system with
multiple cards installed, by default, the G5PIPE standard library functions use all of
them. In order to modify this behavior, you can set a list of device IDs to an environment
variable G5 CARDS. If the list is set, G5PIPE functions use the listed cards only. For
example,

csh> setenv G5 CARDS "0 2 3"

sh> export G5 CARDS="0 2 3"

would indicate the cards with device ID 0, 2, and 3 should be used. This environment
variable might be useful, when you share your system with someone else.

In the case of Model 800, four iFPGAs on a single card have four device IDs different
from each other, and therse iFPGAs can be assigned to different simulations. For example,
on a system with one Model 800 installed, you can set

csh> setenv G5 CARDS "0 2"

sh> export G5 CARDS="0 2"

in order to run a simulation on two iFPGAs with device ID 0 and 2. You can run another
simulation simultaneously, using iFPGAs with device ID 1 and 3.

For one more example, consider a system with two Model 600 and one Model 800. In
order to see device ID of each card, type lsgrape 1.

localhost>/usr/g7pkg/scripts/lsgrape

devid grape(model) backend-logic

0 GRAPE-7(model600) G5

1 GRAPE-7(model800) G5

2 GRAPE-7(model800) G5

3 GRAPE-7(model800) G5

4 GRAPE-7(model800) G5

5 GRAPE-7(model600) G5

This output shows that device IDs 0 and 5 are assigned to the two Model 600s, and 1 to
4 are assigned to the four iFPGAs of the Model 800. Therefore, you can set:

csh> setenv G5 CARDS "3 4 5"

sh> export G5 CARDS="3 4 5"

to use two iFPGAs of the Model 800 (with device IDs 3 and 4) and one of the Model 600
(with device ID 5) for one simulation. The rest devices (two iFPGAs of the Model 800
with device IDs 1 and 2 and one Model 600 with device ID 0), can be used for another
simulation.

1for usage of lsgrape, see GRAPE-7 Installation Guide section 5

4

Warning Message Control: You can use an environment variable G5 WARNLEVEL to
control the warning message output. The variable can be set to 0, 1, 2, or 3. The larger
number indicates the more verbose outputs. The number 1 or 2 is recommended for
normal usage. The number 3 would be nice for debugging purpose. The default value
is 2. The number 0 suppress all but fatal error messages. The variable should not be
set to 0 when you run the functionality check script (/usr/g7pkg/scripts/check.csh).
Otherwise it would fail.

Data Transfer Mode Setting: By default, the G5PIPE library send data from the
host computer to the card using Programmed I/O Write (PIOW) transfer. Here, PIO is a
transfer initiated by the host computer. If you set an environment variable G5 SENDFUNC

to DMAR, the library uses Direct Memory Access Read (DMAR) transfer instead:

csh> setenv G5 SENDFUNC "DMAR"

sh> export G5 SENDFUNC="DMAR"

DMA is a transfer initiated by the card. The performances of PIOW and DMAR de-
pend on the host computer. You can choose the faster one to improve performance
of the simulation. For most of the recent PCs, PIOW is faster, if MTRR is set by
/usr/g7pkg/hibutil/setmtrr.csh. DMAR may be a good choice, if the MTRR can-
not properly be set for some reason (see GRAPE-7 Installation Guide section 3.1 for
setmtrr.csh and MTRR).

2.3 Running Sample Programs

The GRAPE-7 software package includes following sample codes:

/usr/g7pkg/direct/direct

/usr/g7pkg/direct/directa

/usr/g7pkg/direct/directmc

/usr/g7pkg/direct/directtest

/usr/g7pkg/directf77/direct

/usr/g7pkg/vtc/vtc

/usr/g7pkg/direct/directnb

/usr/g7pkg/direct/directnba

Here we assume the package is installed in /usr/g7pkg. In the directory /usr/g7pkg/direct,
you can find direct, directa, directmc, directtest, directnb and directnba.

direct is the simplest example of direct-summation code in C. directa is the same
as direct except that it shows a tiny animation. directmc is the same as direct, except
that it uses “Primitive Functions” instead of “Standard Functions”, so that the user can
specify which card should be involved in the simulation. For details of the “Primitive”
and “Standard” functions, see section 3.

directtest is the same as direct, except that the number of j-particles it can handle
is not limited by the size of the memory unit (See section 4.3 for the detail).

5

/usr/g7pkg/directf77/direct is a counterpart of direct in Fortran.
/usr/g7pkg/vtc/vtc is an implementation of Barnes-Hut tree algorithm[3] in C. See

/usr/g7pkg/vtc/00README for the usage.
directnb and directnba are for G5nbPIPE. It is an extention of G5PIPE, which

has an additional function to store neighbor-particle lists. See G5nbPIPE User’s Guide
(/usr/g7pkg/doc/g5nbuser.pdf) for its usage.

In the following, we give a brief description for programs in /usr/g7pkg/direct/.
The programs direct and directa take two command line arguments, namely, input
file name and output file name. The input file gives the initial distribution of particles,
and the output file stores the final distribution of the particles. Both are in NEMO[2]
’stoa’ format, which is the output format of NEMO ’stoa’ program used to convert NEMO
snapshot file to ascii format. The format is as follows:

NOBJ number of particles [int]

NDIM number of dimensions [int] (MUST BE 3)

TIME time of snapshot [double]

MASS(i) particle masses, i = 1...NOBJ [double]

.....

X(i) Y(i) Z(i) particle positions, i = 1...NOBJ [double]

.....

U(i) V(i) W(i) particle velocities, i = 1...NOBJ [double]

.....

The file /usr/g7pkg/direct/pl2k is an example of the input file containing 2048 parti-
cles.

The program directmc takes three command line arguments. The first two arguments
are the same as those of direct. The third one is the device ID of the card to be used
for the run.

To see how the program works, change directory to /usr/g7pkg/direct and type
./direct pl2k outfile. You will see the following outputs (The outputs on your sys-
tem may not exactly be the same, depending the hardware configuration and software
environment):

nj: 2048

use g5_cards[0]

GRAPE-7 model100 g5_nchip:1 g5_npipes:20 g5_jmemsize:4096 g5_eps2format:floating-point

Warning: g5_get_forceMC() does not calculate potential.

The value returned is just a dummy.

ke: 0.246207

step: 10 time: 1.000000e-01

e: 2.462658e-01 de: 5.902496e-05

ke: 2.462658e-01 pe: 0.000000e+00

ke/pe: inf

.................

step: 90 time: 9.000000e-01

6

e: 2.554286e-01 de: 9.221770e-03

ke: 2.554286e-01 pe: 0.000000e+00

ke/pe: inf

The final distribution of particles are stored in outfile.
Let’s have a look inside the source code, direct.c. In this file, you can find a function

calc gravity():

void

calc_gravity(double *mj, double (*xj)[3], double (*vj)[3],

double eps, double (*a)[3], double *p, int n)

{

g5_set_jp(0, n, mj, xj);

g5_set_eps2_to_all(eps*eps);

g5_set_n(n);

g5_calculate_force_on_x(xj, a, p, n);

}

This function calculates forces among particles located at xjs. g5 set jp() stores the
mass and position of the particles to the memory unit of G5PIPE (section 1 step 1).
g5 set eps2 to all() set the softening parameter. g5 set n() set the total number of
particles. g5 calculate force on x() repeats runs on G5PIPE as described in section 1
step 8, in order to obtain forces from all n j-particles to all n i-particles.

Just below calc gravity(), you can see another force calculator, calc gravity2().
Its behavior is the same as that of calc gravity(), but it is explicitly showing the
procedure described in section 1 step 2 to 7. Is may seem to be more complex than
calc gravity(), but is more flexible. You can insert another job between the step 2 and
7, for example.

In directmc.c, you can find yet another force calculator, calc gravity3(). This is
an example of “Primitive Functions” usage. By device ID (the first argument id), you
can specify a card with which calc gravity3() performs the force calculation.

In directtest.c, you can find calc gravity4(). This extends the function calc gravity2(),
so that the number of j-particles it can handle is not limited by the size of the memory
unit (See section 4.3 for the detail).

2.4 Difference from GRAPE-5/GRAPE-6A

Although most functions in the legacy GRAPE-5 library (libg5a.a) and GRAPE-6A
library (libg65.a) remain unchanged in the new G5PIPE library, some of them are
changed or removed, and several new features are added. Users of the legacy libraries
should pay attention to the following changes:

• The library name changed. Use libg75.a and libhib.a, instead of libg5.a and
libphibdma.a.

• The header-file name changed. It is recommended to use g5util.h, although tra-
ditional gp5util.h still exists as a symbolic link to g5util.h.

7

• g5 set xj() and g5 set mj() do not exist anymore. Use g5 set jp() instead.

• G5PIPE calculates gravitational force only. It does not calculate gravitational po-
tential. For creation of neighbor-particle lists, use G5nbPIPE, an extention of
G5PIPE. See G5nbPIPE User’s Guide (/usr/g7pkg/doc/g5nbuser.pdf) for its us-
age.

• The function shape of the force cutoff is not programmable. It is fixed to the one used
with P3M method. g5 set cutoff table() exists only for backward compatibility.
It actually does nothing.

• The particle memory unit of G5PIPE is smaller than that of GRAPE-5 by ten
fold. GRAPE-5 user might need to add ’j - loop’ to their own codes, in order to
handle particles exceeding the memory size. The memory size can be obtained by
g5 get jmemsize(). The number returned by this function should not be hardcoded
into application programs, since it is subject to change. You can find a coding
example with additional ’j - loop’ in section 4.3.

• The number of virtual pipelines of G5PIPE (i.e. size of the input buffer show
in figure 1) is larger than that of GRAPE-5. The number can be obtained by
g5 get number of pipelines(). Currently, the number is set to 256. However,
this number should not be hardcoded into application programs, since it is subject
to change.

• Several environment variables are added, some are deleted. See section 2.2 for a
complete list of environment variables.

2.5 Use in Multi-Thread Environment

Here we list up some additional information necessary to use G5PIPE from a multi-
threaded process.

• Do not use the “Standard Functions” described in section 3.1.1. Use “Primitive
Functions” only.

• Do not use one card from multiple threads. i.e., do not call any library functions
from multiple threads using the same device ID.

8

3 Reference for G5PIPE Library Functions

3.1 Synopsis

3.1.1 Standard Functions in C

The following functions provide high-level programming interface to manipulate G5PIPE.
The functions described here hide the number of the cards to the user. This approach
simplifies the user program. As long as user controls G5PIPE via these functions, the
user can handle multiple cards as a single object. The user does not need to care about
how many cards are attached to the host computer.

void g5_open(void);

void g5_close(void);

void g5_set_range(double xmin, double xmax, double mmin);

void g5_set_jp(int adr, int nj, double *m, double (*x)[3]);

void g5_calculate_force_on_x(double (*x)[3], double (*a)[3], double *p, int ni);

void g5_set_xi(int ni, double (*x)[3]);

void g5_run(void);

void g5_set_n(int nj);

void g5_set_eps2(int ni, double *eps2);

void g5_set_eps2_to_all(double eps2);

void g5_get_force(int ni, double (*a)[3], double *pot);

int g5_get_number_of_pipelines(void);

int g5_get_jmemsize(void);

void g5_set_eta(double eta);

void g5_set_h_to_all(double h);

void g5_set_h(int ni, double *h);

int g5_read_neighbor_list(void);

int g5_get_neighbor_list(int ip, int *list);

int g5_get_nbmemsize(void);

int g5_set_nbmemsize(int size);

The followings are obsolete. They may not be supported in the next version.

double g5_get_pcibus_freq(void);

void g5_get_range(double *xmin, double *xmax, double *mmin);

void g5_set_xmj(int adr, int nj, double (*xj)[3], double *mj);

void g5_set_eps(int ni, double *eps);

void g5_set_eps_to_all(double eps);

void g5_set_cards(int *c);

void g5_get_cards(int *c);

int g5_get_number_of_cards(void);

int g5_get_number_of_real_pipelines(void);

void g5_set_cutoff_table(double (*ffunc)(double), double fcut, double fcor,

double (*pfunc)(double), double pcut, double pcor);

9

3.1.2 Primitive Functions in C

The following functions provide low-level programming interface to manipulate individual
G5PIPE configured in each GRAPE-7 card. For each invocation of these functions, user
need to specifies the device ID (devid) explicitly. The device ID of each GRAPE-7 card is
obtained using /usr/g7pkg/hibutil/lsgrape utility. See GRAPE-7 Installation Guide
for its usage. Meaning of the arguments other than devid are the same as those of
corresponding standard function described in the previous section.

void g5_openMC(int devid);

void g5_closeMC(int devid);

void g5_set_rangeMC(int devid, double xmin, double xmax, double mmin);

void g5_set_jpMC(int devid, int adr, int nj, double *m, double (*x)[3]);

void g5_set_xiMC(int devid, int ni, double (*x)[3]);

void g5_runMC(int devid);

void g5_set_nMC(int devid, int n);

void g5_set_eps2MC(int devid, int ni, double *eps2);

void g5_set_eps2_to_allMC(int devid, double eps2);

void g5_get_forceMC(int devid, int ni, double (*a)[3], double *pot);

int g5_get_number_of_pipelinesMC(int devid);

int g5_get_jmemsizeMC(int devid);

void g5_set_etaMC(int devid, double eta);

void g5_set_h_to_allMC(int devid, double h);

void g5_set_hMC(int devid, int ni, double *h);

int g5_read_neighbor_listMC(int devid);

int g5_get_neighbor_listMC(int devid, int ip, int *list);

int g5_get_nbmemsizeMC(int devid);

int g5_set_nbmemsizeMC(int devid, int size);

The followings are obsolete. They may not be supported in the next version.

double g5_get_pcibus_freqMC(int devid);

void g5_get_rangeMC(int devid, double *xmin, double *xmax, double *mmin);

void g5_set_xmjMC(int devid, int adr, int nj, double (*xj)[3], double *mj);

void g5_set_epsMC(int devid, int ni, double *eps);

void g5_set_eps_to_allMC(int devid, double eps);

int g5_get_number_of_real_pipelinesMC(int devid);

void g5_set_cutoff_tableMC(int devid,

double (*ffunc)(double), double fcut, double fcor,

double (*pfunc)(double), double pcut, double pcor);

10

3.1.3 Standard Functions in Fortran

The following subroutines and functions provide programming interface in Fortran. They
provide the same functionality as their counterparts in C, except for dummy g5 set cutoff table().

subroutine g5_open

subroutine g5_close

subroutine g5_set_range(xmin, xmax, mmin)

real*8 xmin

real*8 xmax

real*8 mmin

subroutine g5_set_jp(adr, nj, mj, xj)

integer adr

integer nj

real*8 mj(*)

real*8 xj(3, *)

subroutine g5_calculate_force_on_x(x, a, p, ni)

real*8 x(3, *)

real*8 a(3, *)

real*8 p(*)

integer ni

subroutine g5_set_xi(ni, xi)

integer ni

real*8 xi(3, *)

subroutine g5_run

subroutine g5_set_n(n)

integer n

subroutine g5_set_eps2(ni, eps2)

integer ni

real*8 eps2(*)

subroutine g5_set_eps2_to_all(eps2)

real*8 eps2

subroutine g5_get_force(ni, a, p)

integer ni

real*8 a(3, *)

11

real*8 p(*)

function g5_get_number_of_pipelines

integer g5_get_number_of_pipelines

function g5_get_jmemsize

integer g5_get_jmemsize

subroutine g5_set_eta(eta)

real*8 eta

The followings are obsolete. They may not be supported in the next version.

function g5_get_pcibus_freq

real*8 g5_get_pcibus_freq

subroutine g5_get_range(xmin, xmax, mmin)

real*8 xmin

real*8 xmax

real*8 mmin

subroutine g5_set_xmj(adr, nj, xj, mj)

integer adr

integer nj

real*8 xj(3, *)

real*8 mj(*)

subroutine g5_set_eps(ni, eps)

integer ni

real*8 eps(*)

subroutine g5_set_eps_to_all(eps)

real*8 eps

subroutine g5_set_cards(c)

real*8 c(*)

subroutine g5_get_cards(c)

real*8 c(*)

function g5_get_number_of_cards

integer g5_get_number_of_cards

function g5_get_number_of_real_pipelines

integer g5_get_number_of_real_pipelines

12

3.1.4 Primitive Functions in Fortran

The following subroutines and functions provide programming interface in Fortran. They
provide the same functionality as their counterparts in C, except for dummy g5 set cutoff tableMC().

subroutine g5_openMC(devid)

integer devid

subroutine g5_closeMC(devid)

integer devid

subroutine g5_set_rangeMC(devid, xmin, xmax, mmin)

integer devid

real*8 xmin

real*8 xmax

real*8 mmin

subroutine g5_set_jpMC(devid, adr, nj, mj, xj)

integer devid

integer adr

integer nj

real*8 mj(*)

real*8 xj(3, *)

subroutine g5_set_xiMC(devid, ni, xi)

integer devid

integer ni

real*8 xi(3, *)

subroutine g5_runMC(devid)

integer devid

subroutine g5_set_nMC(devid, n)

integer devid

integer n

subroutine g5_set_eps2MC(devid, ni, eps2)

integer devid

integer ni

real*8 eps2(*)

subroutine g5_set_eps2_to_allMC(devid, eps2)

integer devid

real*8 eps2

13

subroutine g5_get_forceMC(devid, ni, a, p)

integer devid

integer ni

real*8 a(3, *)

real*8 p(*)

function g5_get_number_of_pipelinesMC(devid)

integer devid

integer g5_get_number_of_pipelines

function g5_get_jmemsizeMC(devid)

integer devid

integer g5_get_jmemsize

subroutine g5_set_etaMC(devid, eta)

integer devid

real*8 eta

The followings are obsolete. They may not be supported in the next version.

function g5_get_pcibus_freqMC(devid)

integer devid

real*8 g5_get_pcibus_freq

subroutine g5_get_rangeMC(devid, xmin, xmax, mmin)

integer devid

real*8 xmin

real*8 xmax

real*8 mmin

subroutine g5_set_xmjMC(devid, adr, nj, xj, mj)

integer devid

integer adr

integer nj

real*8 xj(3, *)

real*8 mj(*)

subroutine g5_set_epsMC(devid, ni, eps)

integer devid

integer ni

real*8 eps(*)

subroutine g5_set_eps_to_allMC(devid, eps)

integer devid

real*8 eps

14

function g5_get_number_of_real_pipelinesMC(devid)

integer devid

integer g5_get_number_of_real_pipelines

15

3.2 Description

3.2.1 Standard Functions in C

void g5 open(void) gets access permission to G5PIPE. This function must be called
before invocation of any other library functions except for g5 set cards(). If g5 open()

is already invoked by another program, it outputs a message:

Someone is using hib[n]. Sleep...

and wait until the another program releases the access permission by calling g5 close().
By default, all G5PIPEs on all GRAPE-7 cards attached to the host computer are

opened by a single g5 open() call. You can modify this behavior by setting a list of device
IDs to an environment variable G5 CARDS. If the variable is set, g5 open() opens the listed
cards only. See section 2.2 for detailed usage of the environment variable G5 CARDS.

void g5 close(void) releases access permission to G5PIPE. When you share one GRAPE-
7 system with your colleagues, you should invoke this function at regular intervals, say,
each one minute. This will give a chance to another program to open G5PIPE. Once you
released G5PIPE, you need to invoke g5 open() again to get access to G5PIPE.

void g5 set range(double xmin, double xmax, double mmin) specifies the scaling
factor of spatial coordinate and mass.

The arguments xmin and xmax determine the upper and lower limit of the coordinate
system. For all particles, each component of the position coordinate should be in the
range of (xmin/2, xmax/2). The resolution (i.e., the minimum expressible length) of this
coordinate system is ∆x = (xmax − xmin)/232. This is due to the fact that G5PIPE
pipeline uses 32-bit fixed-point format for position coordinate. For example, if you set
xmin = −64 and xmax = 64, the resolution is ∆x = (64− (−64))/232 = 1/225 ≈ 3×10−8.
With this setting, all particles must reside in a cubic space which has side length 64 and
centered at (0, 0, 0), otherwise the calculation results would be incorrect.

In the case of force calculation under periodic bondary condition, such as Particle-
Mesh force calculation in P3M method[4], the arguments xmin and xmax should be set so
that they describe the unit cell. For example, in order to express a unit cell which has
side length 128 and centered at (0, 0, 0), you should set xmin = −64 and xmax = 64.
By doing so, the closest particle image is automatically chosen for the force calculation.
Forces from all other replicas are omitted, if the scale length η of the cutoff function is
properly set (cf. g5 set eta()).

The argument mmin determines the lower limit of mass of particles. g5 set range()

scales the mass so that the force from a particle which has mass mmin does not underflow
even at maximum distance

√
3(xmax/2 − xmin/2). If you use a particle which has mass

smaller than mmin, the force can be so small that a part of its lower bits are lost. The
resolution of the mass is mmin, i.e., all masses in the range of [mmin, 2×mmin) are
treated as mmin. The maximum expressible number of the mass is 511 × 231 × mmin ≈
1012 × mmin. However, the mass should be chosen so that the following relation always

16

holds during the simulation, in order to avoid the overflow of the force.

m

mmin
≤

(

r

rmin

)2

(1)

Here, m is the mass of the particle, r is the distance (including softening) between the
particle and the position at which force is evaluated, and rmin ≈ 10−7 × (xmax− xmin).
This limitation comes from the fact that G5PIPE pipeline uses 57-bit fixed-point format
for force.

For example, in the case of simulation with equal-mass particles, you can simply set
the mass of the particle to mmin. The softening should be larger than rmin so that the
equation (1) holds. In the case of simulation with particles whose masses are different
each other, set mmin small enough to resolve the masses of different particles. And set

the softening of i-th particle, ǫi, large enough to satisfy the relation ǫi ≥ rmin
√

mi/mmin.
Here mi is the mass of i-th particle.

void g5 set jp(int adr, int nj, double *mj, double (*xj)[3]) stores masses mj[0]...mj[nj−1]
and positions xj[0]...xj[nj−1] of j-particles to the memory unit (cf. section 1 step 1).
The masses and positions of nj j-particles are stored from the adr-th location to the
(adr+nj−1)-th location of the memory unit. The number adr + nj must not exceed the
size of the memory, which can be obtained by g5 get jmemsize().

void g5 set xi(int ni, double (*xi)[3]) stores positions xi[0]...xi[ni−1] of ni i-particles
into the input buffer (cf. section 1 step 2). When you start calculation by g5 run(), forces
are evaluated at these positions. The number ni must not exceed the value returned by
g5 get number of pipelines().

void g5 set n(int n) sets the number of particles n stored in the memory unit. The
forces from the n particles are accumulated at the positions set by g5 set xi(), when
you invoke g5 run(). The number n must not exceed the size of the memory, which can
be obtained by g5 get jmemsize().

void g5 run(void) starts the force calculation. The forces from j-particles stored in
the memory unit are evaluated and accumulated at the positions of i-particles set by
g5 set xi().

void g5 set eps2(int ni, double *eps2) sets softening parameters to ni i-particles.
Set square of the softening parameters to eps2[0]...eps2[ni−1]. The number ni must not
exceed the value returned by g5 get number of pipelines(). This function call must
precede g5 set xi().

void g5 set eps2 to all(double eps2) sets an identical softening parameter for all
i-particles. Set square of the softening parameter to eps2. This function call must
precede g5 set xi().

17

void g5 get force(int ni, double (*a)[3], double *p) waits the force calculation
finishes, and retrieves ni forces from pipeline units. The forces and potential are set to
a[0]...a[ni−1] and p[0]...p[ni−1], respectively. The number ni must not exceed the value
returned by g5 get number of pipelines(). Usually, the value ni given to this function
is the same as that given to the corresponding g5 set xi().

Note that G5PIPE currently does not calculate gravitational potential, and thus the
potential values returned to p are not valid.

void g5 calculate force on x(double (*x)[3], double (*a)[3], double *p, int ni)
is a wrapper for force-calculation loop (cf. section 1 step 2 to 7) which would often appear
in user’s application program.

It calculates the forces at ni positions of i-particles given by x, by internally invoking
basic g5 functions. It sets the positions of i-particles by g5 set xi(), starts the force
calculation by g5 run(), wait until the force calculation finishes, retrieves the calculated
force by g5 get force(), and returns the result to a.

Note that G5PIPE currently does not calculate gravitational potential, and thus the
potential values returned to p are not valid.

If the number ni exceeds the value returned by g5 get number of pipelines(), this
function automatically split the positions into subgroups, and calculates the forces for
each subgroup. That is, repetition described in the step 8 of section 1 is automatically
handled).

int g5 get number of pipelines(void) returns the size of the input buffer (figure 1).
This number denotes the maximum number of i-particles which can be processed by a
single sequence of g5 set xi(), g5 run(), and g5 get force() call (cf. section 1 step 2
to 7).

int g5 get jmemsize(void) returns size of the memory unit, i.e., the maximum num-
ber of j-particles which can be stored into the memory unit. If multiple cards are in use,
the total number of particles which can be stored using all of them is returned. Table 1
summarises the size for each model.

void g5 set eta(double eta) sets the scale length η for the cutoff function. The
function shape is fixed to the one used to calculate Particle-Mesh force in P3M method[4],
and is not programmable. Once η is set, the force is multiplied by the cutoff function
gP3M(R) expressed as:

gP3M(R) =



































1 − 1

140
(224R3 − 224R5 + 70R6 + 48R7 − 21R8) for 0 ≤ R < 1

1 − 1

140
(12 − 224R2 + 896R3 − 840R4 + 224R5 + 70R6 − 48R7 + 7R8)

for 1 ≤ R < 2
0 for R ≥ 2,

(2)
where R is the inter-particle distance (includes softening) scaled by η. For application of
the GRAPE hardwares to the P3M method, see [5].

18

double g5 get pcibus freq(void) returns the operation cycle of the PCI-X bus in
MHz unit. The returned value should be one of 133.0, 100.0, 66.0. This function might
be useful to calculate the peak performance of the system on the fly (you can find an
example in /usr/g7pkg/direct/directtest.c). This funtion is obsolete and may
not be supported in the next version.

void g5 get range(double *xmin, double *xmax, double *mmin) returns the scal-
ing factor of spatial coordinate and mass. This funtion is obsolete and may not be
supported in the next version.

void g5 set xmj(int adr, int nj, double (*xj)[3], double *mj) is the same as
g5 set jp(), except that the meaning of the 3rd and 4th argument is interchanged.
This function is provided only for backward compatibility. This funtion is obsolete
and may not be supported in the next version.

void g5 set eps(int ni, double *eps) sets softening parameters to ni i-particles. Set
the softening parameters to eps[0]...eps[ni−1]. The number ni must not exceed the
value returned by g5 get number of pipelines(). This function call must precede
g5 set xi(). This funtion is obsolete and may not be supported in the next
version.

void g5 set eps to all(double eps) sets an identical softening parameter eps for all
i-particles. This function call must precede g5 set xi(). This funtion is obsolete
and may not be supported in the next version.

void g5 set cards(int *c) specifies the cards to be used. In order to use a card which
has device ID i, set the i-th element of the array c to unity. Set elements for non-used
cards to zero. For example, in order to use cards with device ID 0, 2, and 3 on a system
with 5 cards in total, set the elements of c as:

c = {1, 0, 1, 1, 0};

The number of elements of the array c should be larger or equal to the number of cards
attached to the host computer. This funtion is obsolete and may not be supported
in the next version.

void g5 get cards(int *c) returns to array c a list of cards currently in use. The
meaning of the list is the same as that for g5 set cards(). This funtion is obsolete
and may not be supported in the next version.

int g5 get number of cards(void) returns the number of cards in use. By defaults, it
returns the number of cards attached to the host computer. The number is automatically
calculated when the environment variable G5 CARDS is set, or g5 set cards() is invoked.
This funtion is obsolete and may not be supported in the next version.

19

int g5 get number of real pipelines(void) returns the number of G5PIPE pipelines
in use. If multiple cards are in use, the total number of the pipelines is returned. This
function might be useful to calculate the peak performance of the system on the fly
(you can find an example in /usr/g7pkg/direct/directtest.c). Table 1 summarises
the number of pipelines for each model. This funtion is obsolete and may not be
supported in the next version.

void g5 set cutoff table(double (*ffunc)(double), double fcut, double fcor, dou-
ble (*pfunc)(double), double pcut, double pcor) exists only for backward compat-
ibility. It actually does nothing. This funtion is obsolete and may not be supported
in the next version.

3.2.2 Primitive Functions in C, Functions in Fortran

The behavior of all primitive functions is mostly the same as that of standard ones. The
only difference is that the former can individually handle each card. The behavior of all
functions in Fortran is the same as that of C’s.

20

4 Examples

4.1 An example in C

The following code fragment shows how to evaluate accelerations on nj particles by direct-
summation algorithm. Note that the number of particles it can handle is limited by
the number returned by g5 get jmemsize(). For an example without this limitation,
see section 4.3.

#include <stdio.h>

#include "g5util.h"

#define NJMAX (10000)

void main(int argc, char **argv)

{

int i, nj, step, final_step = 100;

double eps, size;

static double mj[NJMAX], xj[NJMAX][3], a[NJMAX][3], p[NJMAX];

readnbody(&nj, mj, xj, vj, argv[1]); // set initial distribution of particles.

g5_open();

size = 10.0;

g5_set_range(-size/2.0, size/2.0, 1.0);

for (step = 0; step < final_step; step++) {

g5_set_jp(0, nj, mj, xj); // send particles which exert forces.

g5_set_eps2_to_all(eps*eps); // send a softening parameter.

g5_set_n(nj); // set number of particles which exert forces.

g5_calculate_force_on_x(xj, a, p, nj); // send particles which ‘‘feel’’

// the force, then G5 calculate

// the force on particles, and send

// them back to ’a’. ’p’ is not used

// for now.

integrate(xj, vj, a, dt, nj); // update particle position.

}

g5_close();

writenbody(nj, mj, xj, vj, argv[2]);

}

21

4.2 An example in Fortran

The following code fragment shows how to evaluate accelerations on nj particles by direct
summation. Note that the number of particles it can handle is limited by the
number returned by g5 get jmemsize(). For an example without this limitation, see
section 4.3.

#include <g5util.h>

#define REAL real*8

#define NJMAX (10000)

program direct_summation

REAL mj(NJMAX), xj(3, NJMAX), vj(3, NJMAX)

REAL a(3, NJMAX), p(NJMAX)

REAL xmax, xmin, mmin

REAL eps, epsinv, dt

integer nj

integer step, final_step

integer i, j, k

C set initial distribution of particles.

call readnbody(nj, mj, xj, vj)

final_step = 100

eps = 0.02

dt = 0.01

xmax = 10.0

xmin = -10.0

mmin = mj(1)

call g5_open()

call g5_set_range(xmin, xmax, mmin)

do step=1,final_step

C send particles which exert forces.

call g5_set_jp(0, nj, mj, xj)

C send a softening parameter.

call g5_set_eps2_to_all(eps*eps)

C set number of particles which exert forces.

call g5_set_n(nj)

C send particles which ‘‘feel’’ the force, then

C G5 calculate the force on particles, and send

22

C them back to ’a’.

C ’p’ is not used for now.

call g5_calculate_force_on_x(xj, a, p, nj)

C update particle positions.

call integrate(xj, vj, a, dt, nj)

enddo

call g5_close()

call writenbody(nj, mj, xj, vj)

end

23

4.3 Another example in C

The following code fragment shows how to evaluate accelerations on nj particles by
direct-summation algorithm. The number of particles it can handle is not limited by
g5 get jmemsize(), in contrast to the example shown in section 4.1. The particles are
splited into subgroups which do not exceed the size of memory unit. Forces from those
subgroups are calculated individually, and then the results are summed up by the host
computer.

#include <stdio.h>

#include "g5util.h"

#define NJMAX (10000)

void main(int argc, char **argv)

{

int i, j, nj, njtmp, step, final_step = 100, jmemsize;

double eps, size;

static double mj[NJMAX], xj[NJMAX][3], a[NJMAX][3], p[NJMAX];

static double atmp[NJMAX][3], ptmp[NJMAX][3];

readnbody(&nj, mj, xj, vj, argv[1]);

g5_open();

size = 10.0;

g5_set_range(-size/2.0, size/2.0, 1.0);

jmemsize = g5_get_jmemsize();

for (step = 0; step < final_step; step++) {

for (i = 0; i < nj; i++) { // clear the force buffer for all nj particles.

for (k = 0; k < 3; k++) {

a[i][k] = 0.0;

}

}

for (j = 0; j < nj; j += jmemsize) { // for each subgroups that contains

njtmp = jmemsize; // jmemsize or smaller number of particles,

if (j + jmemsize > nj) {

njtmp = nj - j;

}

g5_set_jp(0, njtmp, mj + j, xj + j); // set njtmp particles to the particle

// memory unit.

g5_set_eps2_to_all(eps*eps);

g5_set_n(njtmp); // calculate force from njtmp particles

g5_calculate_force_on_x(xj, atmp, ptmp, nj); // to all nj particles.

for (i = 0; i < nj; i++) { // accumulate force from njtmp particles.

for (k = 0; k < 3; k++) {

a[i][k] += atmp[i][k];

}

}

24

}

integrate(xj, vj, a, dt, nj);

}

g5_close();

writenbody(nj, mj, xj, vj, argv[2]);

}

25

References

[1] Kawai A., Fukushige T., Makino J., and Taiji M.,
GRAPE-5: A Special-Purpose Computer for N-Body Simulations,
Publ. Astron. Soc. Japan (2000), Vol. 52, p. 659,
http://xxx.lanl.gov/abs/astro-ph/9909116.

[2] Teuben P. J.,
NEMO - A Stellar Dynamics Toolbox,
http://bima.astro.umd.edu/nemo/.

[3] Barnes J. E. and Hut P.,
A Hierarchical O(N log N) Force Calculation Algorithm,
Nature (1986), Vol. 324, p. 446.

[4] Hockney R. W. and Eastwood J. W.,
Computer Simulation Using Particles,
(McGraw-Hill, New York, 1981) ch5.

[5] Yoshikawa K. and Fukushige T.,
PPPM and TreePM Methods on GRAPE Systems for
Cosmological N-Body Simulations,
Publ. Astron. Soc. Japan (2005), Vol. 57, p. 849.

Acknowledgment

We would like to thank the following people for bug reports and useful comments: Naohito
Nakasato at the University of Aizu, Yuji Fujita at National Institute of Information and
Communications Technology, Takayuki Saitoh at National Astronomical Observatory of
Japan, Yasuhide Sota at Ochanomizu University, Osamu Iguchi at Ochanomizu University,
Takayuki Tachikawa at Kogakuin University, and Peter Englmaier at University of Zurich.

Modification History

version date description author(s)
2.1 11-Feb-2008 Support for Model 800. AK
2.0 23-Apr-2007 Description for cutoff function added. AK
1.3 11-Mar-2007 Section 2.4 added. AK
1.2 03-Mar-2007 Acknowledgement added. AK

Description of G5 SENDFUNC added.
A sample code added.

1.1 19-Feb-2007 Description of g5 set range corrected. AK
1.0 13-Feb-2007 Description for new features added. AK
0.0 26-Jan-2007 Created AK

26

