
Goose Software Package User’s Guide

for version 1.3.3

Last modified at : Mar. 17, 2010

K & F Computing Research Co.
E-mail: support@kfcr.jp

Contents

1 Abstract 4

2 Installation 5

2.1 Required Environment . 5
2.2 Unpacking . 6
2.3 Environment Variables . 7
2.4 Running the Install Script . 7

3 Basic Usage 10

3.1 Programs Handled by Goose . 10
3.2 Design Flow of a Program . 11
3.3 Tutorial 1 – A Numerical Integration . 12
3.4 Tutorial 2 – Gravitational Interactions among Point-Masses 14
3.5 Sample Programs . 16

4 Goose Directives 18

4.1 Goose-for Directive . 18
4.1.1 I/O Type of Variables . 19
4.1.2 Optional Arguments . 21

4.2 Goose-func Directive . 23

5 C-Language Grammar Handled by Goose 25

5.1 Assign Statement . 25
5.2 If Statement . 25
5.3 Conditional Operator . 25
5.4 For Statement . 26
5.5 Return Statement . 26
5.6 Troubleshooting for Statements Not Handled by Goose 27

5.6.1 An Undefined Function . 27
5.6.2 Assignment to a Variable of Type ivar, jvar or cvar 27
5.6.3 Assignment from a Variable of Type result 27
5.6.4 Pure Assignment to a Variable of Type result inside a Nested Loop . 28
5.6.5 Initialization of a Variable of Type result 28
5.6.6 Initialization of a Variable of Type private outside a Loop 29
5.6.7 A Variable Indexed by Multiple Loop Counters 30
5.6.8 Note for GRAPE-DR . 30
5.6.9 Note for AMD’s GPU . 32
5.6.10 Note for NVIDIA’s GPU . 32

2

6 Goose Inside 33

6.1 Goosecc Command-Line Arguments . 33
6.2 Constants defined by goosecc . 34
6.3 External Commands Used by goosecc . 34
6.4 Architecture of the Hardware Accelerators 37

6.4.1 GRAPE-DR . 37
6.4.2 AMD’s GPU . 41
6.4.3 NVIDIA’s GPU . 41

7 License 42

8 Acknowledgement 42

9 Reference 42

10 Modification History 43

3

1 Abstract

This document describes usage of the Goose Software Package.
Goose is an environment for software development that integrates compilers and other

utilities. It helps porting a program described with a programing language such as C, from
PC to a hardware accelerator that works in SIMD fashion. It is designed to minimize the
modification of the original source code necessary for porting. The current version (version
1.3.3) supports C language as a programing language. As hardware accelerators, it supports
KFCR’s GRAPE-DR and GPUs (both AMD’s and NVIDIA’s). In the near future, it is planned
to support Fortran, OpenCL framework, Intel SSE technology, and KFCR’s GRAPE-7.

Goose is a kind of domain-specific developing environment, that is, it is not designed to
support the whole grammar and specification of the programing language. It handles only
descriptions which are suitable for the hardware accelerator. Other descriptions are passed on
to a conventional compiler, such as gcc, to generate an executable for PC, which serves as
the host computer of the accelerator. This approach would minimize the necessary amount of
modification to the source code.

In section 2, installation procedure of the Goose Software Package (hereafter ”this pack-
age”) is described. In section 3, basic usage of Goose is described via tutorials. In section
4, all Goose directives are listed. In section 5, C-language grammar which can be handled by
Goose are shown. Section 6 is devoted to detailed description of Goose compiler inside and
architectures of the hardware accelerators.

In the rest of this document, the topmost directory of this package, i.e.,
/path to the directory at which you unpacked this package/goosepkgthe version number/,
is denoted as $goosepkg.

4

2 Installation

2.1 Required Environment

Goose runs on 64-bit Linux (x86 64). Goose internally uses the following softwares. They
need to be installed beforehand.

• C compiler (gcc version 4.1.0 or higher recommended.)
http://gcc.gnu.org/

• Ruby (version 1.8.5 or higher recommended.)
http://www.ruby-lang.org/

• ATI Stream SDK (version 1.3 or higher recommended.)
http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx

• CUDA (version 2.1 or higher recommended.)
http://www.nvidia.com/object/cuda home new.html

• GRAPE Software Package (version 1.1.0 or higher recommended.)
http://www.kfcr.jp/goose-e.html

• LSUMP (A compiler for the Goose intermediate-representation. Developed by Naohito
Nakasato, University of Aizu.)
http://www.kfcr.jp/goose.html

• VSM (An assembler for GRAPE-DR. Developed by Junichiro Makino, National Astro-
nomical Observatory of Japan.)
http://www.kfcr.jp/goose.html

Not all hardware accelerators require the all softwares listed above. For NVIDIA’s GPU, for
example, some softwares such as ATI Stream SDK and GRAPE Software Package are not
necessary. The table below shows the softwares required for each hardware accelerator.

Hardware Accelerator
GRAPE-DR AMD NVIDIA

ruby * * *
gcc * * *
ATI Stream SDK *
CUDA *
GRAPE Software Package *
LSUMP * *
VSM *

5

2.2 Unpacking

Unpack the software package goosepkgnnn.tar.gz, where nnn is the version number. The
package includes the following items:

00readme Summary of the package.

00readme-j 00readme in Japanese.

doc/ User’s guide and other documents.

scripts/ scripts for installation and backup.

bin/goosecc A tool to build executables for hardware accelerators.

goosec2ir A tool to convert C language description into Goose internal
representation. Goose internally uses this tool.

include/ Header files. Goose internally uses these files.

lib/ Libraries. Goose internally uses these libraries.

singutil/ GRAPE-DR control library. Goose internally uses this library.

gcalutil/ API wrapper for library for AMD’s GPU.
Goose internally uses this library.

sample/ Examples of application programs which can be compiled with
the Goose C Compiler.

init/ Data files used by programs in sample/.

misc/ Templates for environment variable set up, a program to
generate sample data, etc.

6

2.3 Environment Variables

Set the environment variables listed below:

LSUMPPATH : The path to the directory at which LSUMP is installed.
VSMPATH : The path to the directory at which VSM is installed.
GRAPEPKGPATH : The path to the directory at which GRAPE Software Package is installed.
CUDAPATH : The path to the directory at which CUDA is installed.

Defaults to /usr/local/cuda

NVCC : The path to CUDA C compiler nvcc.
Defaults to /usr/local/cuda/bin/nvcc

ATICALPATH : The path to the directory at which ATI CAL is installed.
Defaults to /usr/local/atical

Example for sh:

kawai@localhost>export LSUMPPATH=/home/kawai/src/lsumppkg

kawai@localhost>export VSMPATH=/home/kawai/src/vsm

kawai@localhost>export GRAPEPKGPATH=/home/kawai/src/grapepkg

kawai@localhost>export CUDAPATH=/usr/local/cuda

kawai@localhost>export NVCC=/usr/local/cuda/bin/nvcc

kawai@localhost>export ATICALPATH=/usr/local/atical

Example for csh:

kawai@localhost>setenv LSUMPPATH /home/kawai/src/lsumppkg

kawai@localhost>setenv VSMPATH /home/kawai/src/vsm

kawai@localhost>setenv GRAPEPKGPATH /home/kawai/src/grapepkg

kawai@localhost>setenv CUDAPATH /usr/local/cuda

kawai@localhost>setenv NVCC /usr/local/cuda/bin/nvcc

kawai@localhost>setenv ATICALPATH /usr/local/atical

You can find template files for above mentioned setting at

$goosepkg/misc/rc/genv.sh

$goosepkg/misc/rc/genv.csh

You may copy one of them and modify it to suit your environment. The environment variables
below are also available, but not mandatory.

CC : Specify the C compiler to be used.
CFLAGS : Specify arguments passed on to the C compiler.

2.4 Running the Install Script

Change directory to $goosepkg and run $goosepkg/script/install. It will generate li-
braries, utilities, and data used by sample programs.

7

kawai@localhost>./script/install

cc -O3 -c singutil.c -I/home/kawai/grapepkg/include \

-L/home/kawai/grapepkg/lib -fopenmp

ar -r libsing.a singutil.o

ar: creating libsing.a

ranlib libsing.a

cc -c -o mkdist.o mkdist.c

cc -c -o util.o util.c

cc -o mkdist mkdist.o util.o -lm

n: 1024 output file: pl1k

distribution: Plummer

...

Installation of singutil : success.

Installation of gcalutil : success.

done

This is all what you need for the installation. Compilation of singutil, gcalutil may fail in
some case. These are utilities necessary only for GRAPE-DR and AMD’s GPU, respectively.
If you are not going to use these accelerators, you do not need to care about the compilation
failure.

If the package is successfully installed, all sample programs in $goosepkg/sample/ direc-
tory should be compiled. For example, you can change directory to $goosepkg/sample/s9/

and run make to compile a program which performs a gravitational many-body simulation.

kawai@localhost>pwd

/home/kawai/src/goosepkg/sample/s9

kawai@localhost>make

cc -O3 sticky9.c -o sticky9_host -lm -fopenmp

../../bin/goosecc -O3 -v2 --goose-arch gdr -o sticky9_gdr sticky9.c -lm

Info : $LSUMPPATH : /home/kawai/src/lsump

Info : $VSMPATH : /home/kawai/vsm

Info : $GRAPEPKGPATH : /home/kawai/grapepkg

Info : Architecture : gdr

...

==

An executable file sticky9_amd generated successfully.

==

kawai@localhost>ls

goosetmp inputpara9 Makefile sticky9.c sticky9_amd

sticky9_host sticky9_gdr sticky9_nvidia

8

On successful build, you will see four executables at maximum. These are, namely, s9 host,
s9 gdr, s9 amd and s9 nvidia. The first one performs the simulation purely on the host
computer. The second one performs it on GRAPE-DR, the third and fourth on AMD’s and
NVIDIA’s GPU, respectively. Some exacutables may not be generated if necessary softwares
are not installed. For example, in an environment without CUDA, s9 nvidia would not be
generated.

Note for NVIDIA’s GPU : Sample programs are designed to perform all calculations
in double-precision format. Some old GPUs, however, cannot handle this format. If you
are using such hardwares, you need to modify the source code: find ”Goose-for” directives
and replace their precision("double") arguments to precision("single"). This
will direct the Goose compiler to perform calculations in single precision (see section 4.2).
You also need to modify a makefile ($goosepkg/misc/sample.mk). In the makefile,
an option -arch=sm 13 is passed onto nvcc. This indicates generation of the GPU in
use. Remove this indication.

9

3 Basic Usage

3.1 Programs Handled by Goose

Although Goose handles a program written in C, it does not recognize all grammars defined by
the language specification. It handles only descriptions suitable for SIMD-type accelerators.
The rest of the program is passed on to a conventional C compiler, such as gcc, and compiled
for run on the host computer. Here, a description ”suitable for SIMD-type accelerators” is
defined as the one which satisfy the followings:

(a) Can be highly parallelized, and,

(b) The required amount of data transfer among the accelerator and the external memory (or
the host computer) is small, relatively to the amount of the calculation to be performed
on the accelerator.

Goose handles calculations which can be expressed as:

~ri = f(~xi), (1)

where ~xi are input parameters and ~ri are calculation results. Results of calculations for different
i must not depend each other, and they must be able to run in parallel. Among the above-
mentioned calculations, Goose is especially optimized for the ones which can be expressed
as:

~ri =
∑

j

f(~xi, ~yj). (2)

A calculation described in the form of equation (1) satisfies the condition (a), if the number
of i is large enough. If it can be described in the form of equation (2) too, it satisfies the
condition (b), too. This is because the calculation for various i-s can be performed using a
shared set of ~yj. Therefore, the amount of data necessary to be supplied is smaller, compared
to a case different ~yj-s are required for different i-s. Goose can handle a calculation of the form
of equation (1) but not of equation (2). In such a case, however, the potential performance
of the accelerator may not fully be utilized.

The necessary number of i and j depends on the architecture of the accelerator. In order to
perform a calculation using all processor elements of a GRAPE-DR, for example, the number
of i and j should be larger or equal to 128 and 16, respectively (cf. section 6.4.1). Otherwise
some processor elements are not utilized and remain idle during the calculation.

Example : Calculation of gravitational interactions among point masses can be expressed
by equation (2). The total force ~fi on a point mass i from all other point masses is
given by:

~fi =
∑

j 6=i

Gmimj(~xj − ~xi)

|~xj − ~xi|3
(3)

where G is the gravitational constant, ~xi and mi are position and mass of a particle i.

In C language, equation (1) can be expressed in various way. For simplicity, however, Goose
recognize an expression by ’for’ statement only. In the case of equation (2), it recognize an

10

expression by a nested ’for’ statement only. Expressions other than ’for’ statement, such as
’while’ statement or ’goto’ statement, for example, are not recognized.

Example : Equation (3) can be described by a nested ’for’ statement:

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

if (i != j) {

dx[0] = x[j][0] - x[i][0];

dx[1] = x[j][1] - x[i][1];

dx[2] = x[j][2] - x[i][2];

r2 = dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2];

mmr3 = G * m[i] * m[j] / (sqrt(r2) * r2);

f[i][0] += mmr3 * dx[0];

f[i][1] += mmr3 * dx[1];

f[i][2] += mmr3 * dx[2];

}

}

}

3.2 Design Flow of a Program

Basically, user write a program in C language and process it with a command $goosepkg/bin/goosecc.
The command generates an executable for a hardware accelerator. The design flow of an ap-
plication program is as follows:

(step 1) Write an application program in C language, and test it on the host computer (PC).
A code fragment which is expected to run efficiently on the hardware accelerator (cf.
section 3.1) should be described with ’for’ statements. Do not use ’while’ or ’do while’
statements.

In the case of calculation which is symmetric for the inner/outer loops of the nested
’for’ statement (e.g. particle interactions which satisfy the law of reciprocal action), the
calculation is often described in the following manner, in order to save the amount of
calculation. However, such a description should be avoided since Goose cannot handle

11

it.

Example : A description of equation (3) in C language. Optimized to save the amount
of calculation using the symmetric nature of gravity. Such an optimization SHOULD
BE AVOIDED since Goose cannot handle the inner ’for’ statement with non-constant
loop range.

for (i = 0; i < n; i++) {

for (j = i+1; j < n; j++) {

dx[0] = x[j][0] - x[i][0];

dx[1] = x[j][1] - x[i][1];

dx[2] = x[j][2] - x[i][2];

r2 = dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2];

mmr3 = G * m[i] * m[j] / (sqrt(r2) * r2);

f[i][0] += mmr3 * dx[0];

f[i][1] += mmr3 * dx[1];

f[i][2] += mmr3 * dx[2];

f[j][0] -= mmr3 * dx[0];

f[j][1] -= mmr3 * dx[1];

f[j][2] -= mmr3 * dx[2];

}

}

(step 2) Attach an OpenMP directive (#pragma omp parallel for) to the ’for’ statement
mentioned in (step 1). Then test the program in a multi-threaded environment. This
step may be skipped, although it is recommended as a method to check sanity of the
’for’ statement when it is run in parallel. It is also useful to estimate the speed up factor.
For the usage of OpenMP, refer to other documents such as http://openmp.org/.

(step 3) Attach a Goose directive (#pragma goose parallel for) to the ’for’ statement men-
tioned in (step 1) and (step 2). Then compile the program with goosecc to obtain an
executable. The executable generated performs the ’for’ statement on the hardware
accelerator. Other parts are performed on the host computer.

3.3 Tutorial 1 – A Numerical Integration

In this and next sections, basic usage of Goose is shown via two programming examples.

In this section, we describe Goose directives using a sample program
$goosepkg/sample/midpoint/midpoint.c. This program numerically calculates

∫
1

0
4/(1 + x2)dx,

which should analytically be equal to π. The primary part of this program is a ’for’ statement
quoted below:

for(i=0;i<n;i++) {

x = (i+0.5)*dx;

sum += integrand(x)*dx;

}

The domain [0, 1] is divided into n segments. At each center of the segment, the code

12

multiplies the value of the integrand and dx, and sums it up to obtain sum. The integrand is
defined as a C function, integrand().

You can compile the program for the host computer, using a conventional C compiler:

kawai@localhost>cd $goosepkg/sample/midpoint/

kawai@localhost>cc midpoint.c -o midpoint_host

The generated executable, midpoint host, outputs the following result:

kawai@localhost>./midpoint_host

n:16384 sum:3.14159265390022e+00 sum/M_PI-1.0:9.881305e-11

Now we confirmed that the program works on the host computer as we expected. The
next step is to put the above mentioned ’for’ statement on to a hardware accelerator. Note
that the ’for’ statement is preceded by a Goose directive, #pragma goose parallel for,
hereafter we call this directive as a ”Goose-for directive”.

#pragma goose parallel for loopcounter(i) result(sum)

for(i=0;i<n;i++) {

x = (i+0.5)*dx;

sum += integrand(x)*dx;

}

A Goose-for directive directs the Goose C compiler to put the ’for’ statement on a hardware
accelerator. Other parts of the program is performed on the host computer.

If you look inside the Goose ’for’ directive, you would notice that some arguments, such
as loopcounter(i), are given for the directive:

• The argument loopcounter(i) denotes that a variable i is used as the loop counter
of the ’for’ statement. Default value of the loop-counter name is i. You can omit
loopcounter argument, if the name i is used.

• The argument result(sum) denotes that a variable sum need to be sent back from the
accelerator to the host computer, as the calculation result.

Next, pay your attention to the definition of the integrand :
#pragma goose func

double integrand(double x)

{

double s;

s = 4.0/(1.0+x*x);

return s;

}

The function is preceded by a Goose directive, #pragma goose func, hereafter we call this
directive as a ”Goose-func directive”. The directive should be attached to a function, if the
function is used inside a ’for’ loop, which a Goose-for directive is attached to. There are some
restrictions for a function to be attached by a Goose-func directive: The function should have

13

exactly one argument; It should explicitly return a value by a return statement; A Goose-func
directive cannot be attached to a function of type void, or one without return statement.

Now we understood all the Goose directives in the program. Next we compile the program
to build an executable for a hardware accelerator. For the compilation, we use a command
$goosepkg/bin/goosecc. Change directory to $goosepkg/sample/midpoint/, and run
goosecc with arguments as shown below.

kawai@localhost>../../bin/goosecc midpoint.c -o midpoint --goose-arch amd

==========================

Processing ’midpoint.c’.

==========================

/home/kawai/src/goosepkg1.3.3/bin/goosec2ir -i midpoint.c \

-o ./goosetmp -a amd -p f0 -v2

Info : Goose::GforHandler : No j-loop found. The entire i-loop \

body is used as a kernel.

Info : Goose::GforHandler : Recognized as an ip var : i

Info : Goose::GforHandler : Recognized as a shared_ro var : dx

...

===

An executable file midpoint_amd generated successfully.

===

Here, --goose-arch specifies architecture of the hardware accelerator. For GRAPE-DR,
AMD’s GPU, NVIDIA’s GPU, argument gdr, amd, nvidia should be given, respectively. See
section 6.1 for a complete list of the command-line arguments.

On successful compilation, an executable midpoint will be generated. When you set up a
hardware accelerator and run midpoint, the ’for’ statement attached by a Goose-for directive
runs on the accelerator. Other parts of the program are performed on the host computer. The
outputs should be the same as that of midpoint host.

3.4 Tutorial 2 – Gravitational Interactions among Point-Masses

In this section, we use a sample program $goosepkg/sample/gravity/gravity.c. This
program calculates acceleration of particles ai in a many-body system, in which point-mass
particles are interacting via gravity. The gravitational force is originally described by equation
(3). Here, we adjust the spatial and mass scaling so that the gravitational constant G equals
unity, and introduce a ”softening parameter”, ǫ, in order to avoid numerical inaccuracy:

~ai =
∑

j 6=i

mj(~xj − ~xi)

(|~xj − ~xi|2 + ǫ2)3/2
(4)

In the sample program, you can find a nested ’for’ statement, that describes the equation
above.

14

#pragma goose parallel for precision ("double") loopcounter(i, j) \

result(a[i][0..2], pot[i]) precision ("double")

for(i=0;i<n;i++) {

for(k=0;k<3;k++) a[i][k] = 0.0;

pot[i] = 0.0;

for(j=0;j<n;j++) {

for(k=0;k<3;k++) dx[k] = x[j][k] - x[i][k];

r2 = dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2] + eps2;

rinv = rsqrt(r2);

mrinv = m[j]*rinv;

mr3inv = mrinv*rinv*rinv;

for(k=0;k<3;k++) a[i][k] += mr3inv * dx[k];

pot[i] -= mrinv;

}

}

get_cputime(<,&st);

total_time += lt;

for(i=0;i<n;i++) pot[i] += m[i]/sqrt(eps2);

Equation (4) is in the form of equation (2). In such a case, the program should be described
using a nested ’for’ statement (cf. section 3.1). A Goose-for directive directs the Goose C
compiler to put the nested ’for’ statement on to a hardware accelerator. Other parts of the
program is performed on the host computer.

The followings are arguments to the Goose-for directive (some of them are the ones de-
scribed in section 3.3):

• The argument loopcounter(i, j) denotes that variables i and j are used as the loop
counter. Order of the two variables does not affect behavior of the compiler, goosecc.

The compiler recognises a ’for’ statement immediately after Goose-for directive as the
’outer loop’. If the loop counter for the outer loop is not listed up by loopcounter(),
goosecc stops the compilation.

When goosecc found the counter for outer loop in loopcounter(), it recognises the
rest of the two variables as the counter for ’inner loop’. Then it looks for the inner loop
inside the body of the outer loop. If it founds no inner loop or founds multiple inner
loops, it stops the compilation. Default value of the outer/inner loop-counter names are
i and j, respectively. You can omit loopcounter argument, if these names are used.

• The argument result(a[i][0..2],pot[i]) denotes that variables a[i][0..2] and
pot[i] need to be sent back from the accelerator to the host computer, as the cal-
culation result. Here, 0..2 is interpreted as three indices, 0, 1, and 2. That is, an
expression x[i][0..2] is equivalent to x[i][0], x[i][1], x[i][2]. The two-dot
notation, ’..’, is valid only in the Goose directives.

• The argument precision("double") denotes that variables are expressed in 64-bit
floating-point format. Types specified in variable declarations of C language, if any,
would be ignored. valid values for the precision() argument are listed in section
4.1.2.

15

Notice:

• If the name of a function attached by a Goose-func directive is predefined as Goose-
precompiled function, the user definition is ignored (cf. section 4.2). For example,
rsqrt() is one of a Goose-precompiled function. Thus, the definition at the top of the
sample program:

double rsqrt(double r2)

{

return 1.0/sqrt(r2);

}

is skipped by goosecc.

• ’For’ statements nested further inside a nested ’for’ loop, would be unrolled. For example,

for(k=0;k<3;k++) dx[k] = x[j][k] - x[i][k];

is equivalent to

dx[0] = x[j][0] - x[i][0];

dx[1] = x[j][1] - x[i][1];

dx[2] = x[j][2] - x[i][2];

Goosecc does not handle a ’for’ statement whose loop-range is infinite or not determined
at the compilation time. When goosecc found such a statement, it stops compilation
(cf. section 5.4).

• Since the sample program uses a mathematical function sqrt(), a command-line option
-lm is required.

kawai@localhost>cd $goosepkg/sample/gravity/

kawai@localhost>../../bin/goosecc gravity.c -o gravity -lm

3.5 Sample Programs

A directory $goosepkg/sample/ contains examples of application programs which can be
compiled by goosecc. These would be useful as reference designs to help understanding of

16

the usage of the Goose directives.

Nested ’for’ statement (equation (2))
gravity/ Calculates gravitational interactions

(used in the tutorial in section 3.4).

gravity cutoff/ Calculates gravitational interactions with P3M cutoff,
under a periodic boundary condition.

hermite/ Calculates gravitational interactions and its time derivatives.

gravperf/ Measures performance of gravitational-force calculation.

pairwise/ Calculates gravitational forces among two particles for various
separations, and then evaluates their accuracy.

tree/ Calculates gravitational interactions using the Barnes-Hut Tree algorithm.

s9/ Performs a gravitational many-body simulation
(the leaf-frog integrator, shared timestep).

s8/ Performs a gravitational many-body simulation
(the Hermite integrator of the 4th order, individual timestep).

vdw/ Calculates van der Waals interactions
(the Lennard-Jones potential).

sph/ Calculates the accelerations for SPH particles
(Spline kernel, no artificial viscosity).

A single ’for’ statement (equation (1))
singleloop/ Performs a simple test (accumulation of integer numbers) of

a single ’for’ statement.

midpoint/ Numerically calculates
∫

1

0
4/(1 + x2)dx using the Midpoint method

(used in the tutorial in section 3.3).

mesh1d/ On each grid-point in a one-dimensional domain space, calculates
a weighted average of a given function.

In each directory, type make to generate executables for the hardware accelerators, as well as
an executable that performs the calculation purely on the host computer.

17

4 Goose Directives

Goose recognizes two directives below:

Goose-for directive : #pragma goose parallel for [optional-arguments]
Inserted just before a ’for’ statement to make the statement run on a hardware accelerator.

Goose-func directive : #pragma goose func

Inserted just before a function definition, so that the function can be used inside a ’for’
statement which a Goose-for directive is attached to.

Notice : Goose directive must be written in a single line. Otherwise the line-feed
character must be escaped by a backslash.

Expample : #pragma goose \

parallel for

4.1 Goose-for Directive

A Goose-for directive is inserted just before a ’for’ statement. It directs the Goose to make the
statement run on a hardware accelerator. It is usually attached to a nested ’for’ statement,
although it can be attached to a single ’for’. ’For’ statements further inside the nested ’for’
loop, would be unrolled.

Example :

#pragma goose parallel for

for (i = 0; i < ni; i++) { // outer ’for’.

for (j = 0; j < nj; j++) { // inner ’for’.

for (k = 0; k < 3; k++) { // ’for’ to be unrolled.

dx[k] = x[j][k] - x[i][k];

}

r2 = dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2] + eps2;

rinv = rsqrt(r2);

mf = m[j]*rinv*rinv*rinv;

for (k = 0; k < 3; k++) { // ’for’ to be unrolled.

a[i][k] += mf * dx[k];

}

p[i] -= m[j] * rinv;

}

}

Types of all variables used by the accelerator are double, or the one specified by #pragma

goose parallel for precision (cf. section 4.1.2). Types specified in variable declarations
of C language, if any, would be ignored.

18

4.1.1 I/O Type of Variables

The host computer and the hardware accelerator communicate variables used inside a ’for’
statement attached by a Goose-for directive. Each variable is assigned an ”I/O type” attribute,
according to the communication required.

Figure : Examples of I/O types. I/O types ivar and jvar are assigned to input
variables x and y, respectively. I/O type result is assigned to an input variable
a.

I/O Types

type description

ivar Input parameters which depend on the outer-loop counter i, that is,
(aliased to ip) ~xi in equation (2). Sent from the host computer to the accelerator.

jvar Input parameters which depend on the inner-loop counter j,
(aliased to jp) that is, ~xj in equation (2). Sent from the host computer to the accelerator.

cvar Input parameters which depend neither on i nor j.
(aliased to shared ro) Sent from the host computer to the accelerator.

private Intermediate variables temporarily used during the calculation.
Used only on the accelerator, and not sent back to the host computer.

result Results of the calculation, that is, ~ri in equation (2).
Sent back from the accelerator to the host computer.

19

I/O Type Inference Rules:

The I/O type of a variable is automatically inferred by goosecc following the rules shown
below. You can explicitly specify the I/O type by giving an argument to the Goose-for directive,
if necessary (cf. section 4.1.2).

Letting the loop counter of the outer and inner ’for’ being i and j,

• A variable indexed by i is inferred as a variable of I/O type ivar. If the variable is used
as an lvalue, however, it is inferred as a result type.

• A variable indexed by j is inferred as a jvar type.

• A variable used as an lvalue is inferred as a private type, if none of above mentioned
conditions are met. It can be recognized as a result type, if explicitly specified by an
argument to the Goose-for directive. A variable sum in
$goosepkg/sample/midpoint/midpoint.c is such an example (cf. section 3.3).

• A variable never used as an lvalue is inferred as a cvar type.

In many cases, a user do not need to specify I/O types explicitly. An exceptional case is
that a variable not indexed by the outer-loop counter, i, is used to store a calculation result.
In such a case the variable need to be specified as a result type. Otherwise the variable is
infered as a private type. A variable sum in
$goosepkg/sample/midpoint/midpoint.c is such an example (cf. section 3.3). See section
4.1.2 for a Goose-for argument to specify I/O type.

20

4.1.2 Optional Arguments

A Goose-for directive may take various optional arguments including I/O type specifiers. Below
is the complete list of valid arguments.

Optional Arguments:

synopsis description

loopcounter(var0,[var1]) Use variables var0 and var1 as the loop counter of the ’for’ statement.
Default values are i and j.

result(var, ...) Set the I/O type of a variable var to result.

ivar(var, ...) Set the I/O type of a variable var to ivar.
(aliased to ip)

jvar(var, ...) Set the I/O type of a variable var to jvar.
(aliased to jp)

cvar(var, ...) Set the I/O type of a variable var to cvar.
(aliased to shared ro)

private(var, ...) Set the I/O type of a variable var to private.

precision("prec") Set the numerical format of variables to ”prec”. Valid values as
”prec” are: ”double” (64-bit floating-point), ”double-single”
(64-bit floating-point for addition/subtraction, 32-bit for multiplica-
tion/division), and ”single” (32-bit floating-point). Higher precision
”quadruple” (128-bit floating-point) will be supported soon. The de-
fault value is ”double”. All accelerators support ”double”. Some
accelerators do not support some formats other than ”double”:

Accelerator
precision GRAPE-DR AMD NVIDIA

single - ** **
double-single ** * **
double ** ** **
quadruple * * -
**:supported *:wil be supported

asmfile("filename") Specify an assembly code passed on to the assembler. If given, the
code is used to build an executable, instead of the one generated by
goosecc (e.g., foo 0.vsm cf. section 6.3). This argument is used
when you need to hand-tune the assembly code.

(the list continues to the next page...)

21

Optional Arguments (...continued from the previous page):

synopsis description

njp write(var) When given, only the first var variables of jvar type is sent to the
accelerator. Variables with index j larger than, or equal to var are
not sent to the accelerator. Their values remain unchanged from the
previous calculation and reused. By doing this, the amount of data
transfer would be reduced (cf. $goosepkg/sample/s8/). All jvar-
type variables are sent to the accelerator, if this argument is not given.

nip pack(uint) Set the amount of calculation processed by a single processor element
(PE). If this argument is not given, one PE processes calculations for
nvec indices (i-s) (Here, nvec is the vector loop length of the PE).
When given, one PE processes uint × nvec indices. Effective perfor-
mance of a calculation may be improved when uint is set to around
2∼5, since the communication overhead between the host computer
and the accelerator is hidden.

22

Notice:

• In order to specify the I/O types of multiple variables, give a comma-separated list of
variables to the type specifier.

Example : ip(a, b, c)

• Strictly speaking, an I/O-type attribute is assigned not to a variable but to a value
referenced by a variable. Therefore, the attribute can be assigned to, for example, an
array element, dereference of a pointer, and a member of a structure.

Example :

double x[255];

int index[255], j;

struct a_struct_t a_struct, *a_struct_p;

ip(x[0]); // array element.

ip(x[i]); // array element with variable index.

ip(x[index[i]]); // array element with index expressed

// using another array element.

jp(*(x+j)); // dereference of a pointer.

jp(a_struct.a_member); // a member of a structure.

jp(a_struct_p->a_member); // a member of a structure refered

// by a pointer.

• A range of an array can be specified by a two-dot notation, ’..’.

Example : ip(x[i][0..2])

is equivalent to the below.

ip(x[i][0], x[i][1], x[i][2])

• The hardware accelerator and the host computer do not share any address space. There-
fore, the address of variables cannot be passed on to each other. The I/O-type specifier
is not valid for reference to an address.

Example:

double x, y[255];

int i;

ip(&x); // NG

ip(x); // OK

ip(y); // NG

ip(y[0]); // OK

ip(y[i]); // OK

ip(*(y + i)); // OK

4.2 Goose-func Directive

Goose-func directive, #pragma goose func, should be attached to a function, if the func-
tion is used inside a ’for’ loop, which a Goose-for directive is attached to. There are some
restrictions for a function to be attached by a Goose-func directive: The function should have

23

exactly one argument; It should explicitly return a value by a return statement; A Goose-func
directive cannot be attached to a function of type void, or one without return statement.

The value of argument and the returning value are treated as double, or the numerical
format specified by #pragma goose parallel for precision (cf. section 4.1.2). Types
specified in variable declarations of C language, if any, would be ignored.

Example :

#pragma goose func

static double rsqrt(double r2)

{

int i;

double x0 = 1.0;

for (i = 0; i < 4; i++) {

x0 = 0.5*x0*(3.0 - r2*x0*x0);

}

return x0;

}

If the name of a function attached by a Goose-func directive is predefined as Goose-
precompiled function, the user definition is ignored and the precompiled one is used. Below is
the complete list of Goose-precompiled functions:

• rsqrt(x) : Returns the inverse square root of the argument x, that is, 1/
√

x.

• For NVIDIA’s GPU, all functions supported by the standard math library are predified
(e.g. sqrt(x), cos(x), sin(x)).

24

5 C-Language Grammar Handled by Goose

Although goosecc handles a program written in C, it does not recognize all grammars defined
by the language specification. In this section, C-language grammars which can be handled by
goosecc are described.

5.1 Assign Statement

Goosecc can compile most of assign statements.
Example :

r2 = dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2];

a[i][k] += mf * dx[k]; // a self assignment.

double eps = 0.01; // a variable declaration with an initializer.

rinv = rsqrt(r2); // an assignment of a returning value of a function.

An assign expression can be evaluated as a value.
Example :

x = y = z = 0.0;

rinv = rsqrt(r2 = dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2]);

5.2 If Statement

An ’if’ statement can be compiled if its conditional expression matches the following form:

var0 rel op var1

Here, var0 and var1 are variables or number literals,
rel op is a relational operator one of : <, <=, >, >=, ==, and ! =.

Example :

if (i != j) {

f[i] += fij;

}

The statements can be nested.
Example :

if (q > 2.0) {

wkernel = 0.0;

}

else if (q > 1.0) {

wkernel = 0.25*(2.0-q)*(2.0-q)*(2.0-q);

}

else {

wkernel = 1.0-1.5*q*q+0.75*q*q*q;

}

5.3 Conditional Operator

A conditional operator can be compiled if its conditional expression matches the following
form:

25

var0 rel op var1

Here, var0 and var1 are variables or number literals,
rel op is a relational operator one of : <, <=, >, >=, ==, and ! =.

Example : wkernel = q > 2.0 ? 0.0 : 0.25*(2.0-q)*(2.0-q)*(2.0-q);

The operators can be nested.
Example :

wkernel = q > 2.0 ? 0.0 :

q > 1.0 ? 0.25*(2.0-q)*(2.0-q)*(2.0-q) :

1.0-1.5*q*q+0.75*q*q*q;

5.4 For Statement

A ’for’ statement further inside a nested ’for’ loop attached by a Goose-for directive, or one
inside a function attached by a Goose-func directive, would be unrolled. If the ’for’ statement
is nested, all the loops are recursively unrolled.

A ’for’ statement can be unrolled only if its loop-range and stride is fixed at the compilation
time. Otherwise the statement is ignored, and goosecc warns about it. More precisely, a ’for’
statement is unrolled, if it matches the following form:

for (var = init val ; var rel op final val ; var = var + inc val)

Here, var is a variable, init val, final val, and inc val are number literals, and rel op is a
relational operator one of : < and <=. The equation var = var + inc val can be written as
var += inc val. If inc val is unity, it can be written as var++, too.

Example :

for (k = 0; k < 3; k++) {

a[i][k] += mf * dx[k];

}

This ’for’ statement is unrolled as:

a[i][0] += mf * dx[0];

a[i][1] += mf * dx[1];

a[i][2] += mf * dx[2];

5.5 Return Statement

A ’return’ statement can be used only inside a function attached by a Goose-func directive. It
cannot be used inside a ’for’ statement attached by a Goose-for directive.

26

5.6 Troubleshooting for Statements Not Handled by Goose

When goosecc find a statement it cannot handle, it prints an error message and stops the
compilation process. In this section, examples of such statements are shown.

5.6.1 An Undefined Function

When gosecc find a function call inside a Goose-for loop, and if the function is not attached
by a Goose-func directive, gosecc stops the compilation.

example :

#pragma goose parallel for

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

printf("just for debugging purpose.\n"); // NG

}

}

5.6.2 Assignment to a Variable of Type ivar, jvar or cvar

A variable of I/O type ivar, jvar or cvar is for read only. It cannot be assigned a value
inside a Goose-for loop, i.e., it cannot be an lvalue. If gosecc find such an expression, it stops
the compilation.

example :

#pragma goose parallel for ivar(x[i]) jvar(x[j]) cvar(eps)

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

x[j] = some_value; // NG

x[i] = other_value; // NG

eps = yet_another_value; // NG

}

}

5.6.3 Assignment from a Variable of Type result

A variable of I/O type result is for write only. It cannot be an rvalue. If gosecc find such
an expression, it stops the compilation.

There is one exceptional case, however: an abbreviated-assignment operator += or −= can
have a result variable as its left-hand side.

27

example :

#pragma goose parallel for result(r[i])

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

r[i] = some_value * (r[i] + other_value); // NG

r[i] = r[i] + some_value; // NG

r[i] += some_value; // OK

r[i] -= some_value; // OK

}

}

5.6.4 Pure Assignment to a Variable of Type result inside a Nested Loop

Inside a nested Goose-for loop, pure assignment operator (i.e., non-abbreviated assignment
operator) cannot have a result variable as its left-hand side. Only abbreviated-assignment
operators += or −= are permitted. A pure assignment inside a nested loop is usually redundant,
and it can be moved ouside the inner loop.

example :

#pragma goose parallel for result(r[i])

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

r[i] = some_value; // NG

}

r[i] = some_value; // OK

}

Inside a single (i.e., non-nested) loop, there is no such a restriction to assignment operators.

example :

#pragma goose parallel for result(r[i])

for (i = 0; i < ni; i++) {

r[i] = some_value; // OK

}

5.6.5 Initialization of a Variable of Type result

Immediately after Goose-for directive, the initial values of result variables are automatically
set to 0.0. A value set before the directive will be lost and overwritten by 0.0. A code fragment
below trying to set an offset init value to variables r[i], but it does not work as expected.

28

example :

for (i = 0; i < ni; i++) {

r[i] = init_value; // overwritten by 0.0.

}

#pragma goose parallel for

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

r[i] += some_value;

}

}

This should be rewritten as:

#pragma goose parallel for

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

r[i] += some_value;

}

}

for (i = 0; i < ni; i++) {

r[i] += init_value;

}

5.6.6 Initialization of a Variable of Type private outside a Loop

A variable of I/O type private cannot be initialized outside Goose-for loop. It must be
initialized inside the loop. Otherwise its value would be undefined. At present, goosecc does
not warn about such a case.

29

some_pvar = init_value; // takes no effect.

#pragma goose parallel for

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

some_pvar += some_value;

r[i] += some_pvar; // NG since some_pvar is not initialized.

}

}

some_pvar = init_value; // takes no effect.

#pragma goose parallel for

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

if (cond) {

some_pvar = some_value;

}

r[i] += some_pvar; // NG since some_pvar is undefined

// if cond is false.

}

}

5.6.7 A Variable Indexed by Multiple Loop Counters

Inside a nested Goose-for loop, a variable can be indexed by either outer or inner loop counter.
It cannot be indexed by both, although such an expression will be supported in a near future.

example : #pragma goose parallel for

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

r[i] += x[i][j]; // NG

}

}

5.6.8 Note for GRAPE-DR

For a nested Goose-for loop on GRAPE-DR, a user should take special care for the range of the
inner loop. By goosecc, the range of the inner-loop counter (hereafter j) is always rounded
up to a multiple of 16. This is a restriction due to the hardware architecture of GRAPE-DR.
When data of type jvar are sent to GRAPE-DR, it is broadcasted to all 16 broadcast blocks
in each GRAPE-DR chip, and all the 16 blocks process the same number of jvar data (cf.
section 6.4.1).

For example, a Goose-for loop:

30

#pragma goose parallel for precision("double")

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

sum[i] += x[j];

}

}

retruns a correct calculation results into sum[i] if nj is a multiple of 16. However, if nj is
not a multiple of 16, unnecessary x[nj], x[nj+1], ... , x[nj1-1] are accumulated to
sum[i] and the result can be incorrect. Here, nj1 is nj rounded up to a multiple of 16. In
order to avoid such a wrong behavior, goosecc automatically set 0.0 to x[nj], x[nj+1],

... , x[nj1-1] before starting the calculation. Therefore, the loop returns a correct result
nevertheless nj is not a multiple of 16.

In some case, however, the care described above would not help. For example, the following
Goose-for may not return a correct result, if nj is not a multiple of 16.

#pragma goose parallel for precision("double")

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

sum[i] += x[j] 鐚 y[i];

}

}

Since x[nj], x[nj+1], ... , x[nj1-1] are set to 0.0 by goosecc, and do no harm.
However, y[i] is accumulated to sum[i] not nj but nj1 times. Therefore, the result is
larger by y[i] * (nj1 - nj + 1) than expected. You may want to introduce a new variable
filter to correct the results:

for (j = 0; j < nj; j++) {

filter[j] = 1.0;

}

for (j = nj; j < nj1; j++) {

filter[j] = 0.0;

}

x[nj] = 0.0;

#pragma goose parallel for precision("double")

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

sum[i] += (x[j] 鐚 y[i]) * filter[j];

}

}

This actually work, however, is too much. If you look at the original code carefully, you
will notice the calculation algorithm is redundant. You can rewrite the code as follows, so
that the nested loop is divided into two non-nested loops. The variable filter is no longer
necessary, and the calculation speed would likely to be faster.

31

for (j = 0; j < nj; j++) {

tmp += x[j];

}

#pragma goose parallel for precision("double")

for (i = 0; i < ni; i++) {

sum[i] = y[i] * nj + tmp;

}

Note that the restriction described in this section is applied only to the inner-loop counter.
There is no restriction for the range of the outer-loop counter.

5.6.9 Note for AMD’s GPU

For a nested Goose-for loop on AMD’s GPU, goosecc rounds up the range of the inner-loop
counter to a multiple of veclen. Here, veclen is 2 for double precision, and is 4 for single
precision. This is a restriction due to the hardware architecture of AMD’s GPU. In order to
obtain correct result even if the loop range is not a multiple of veclen, a user should take
special care for writing a nested Goose-for loop. See section 5.6.8 for detail. GRAPE-DR has
a similar restriction, although veclen is not 2 nor 4, but 16.

Note that the restriction described in this section is applied only to the inner-loop counter.
There is no restriction for the range of the outer-loop counter.

5.6.10 Note for NVIDIA’s GPU

Some of NVIDIA’s GPUs cannot handle double-precision format. If you are using such a
hardware, you must give precision("single") argument to all Goose-for directives, so that
the calculation is always performed with single-precision format (see section 4.2).

If you are using a GPU that can handle double-precision format, you need to use an option
-arch= to explicitly specify the generation of the GPU.

example : goosecc --goose-arch nvidia test.c -arch=sm_13

Here, an option -arch=sm 13 given to goosecc is passed on to nvcc. Valid names of
GPU generation is listed in documents provided by NVIDIA. In the case of CUDA version 2.3,
for example, you can find the list in ”The CUDA Compiler Driver NVCC” (nvcc 2.3.pdf).

32

6 Goose Inside

6.1 Goosecc Command-Line Arguments

Synopsis:

goosecc [options] inputfile(s)...

inputfile(s)... are source files written in C. Valid options are shown below.

Command-Line Arguments:

arguments description (the default value is denoted by [].)

–goose-arch < arch > Architecture type of the hardware accelerator. [gdr]

–goose-backannotate Suppress generation of assembly codes.
Used to avoid hand-tuned assembly codes are overwritten.

-o <outputfile > Name of executable file to be generated. [a.out]

-I <headerpath> Search path for header files.

-Wcc “options” Pass options as options to the C compiler.

-Wld “options” Pass options as options to the linker.

–verbose [= level] Be verbose. The level may optionally be given.
-v [level] The higher level gives the more verbose messages.

The minimum value is 0, the default is 2.

–version Print the version number of goosecc.
-version

–help Print help message.
-h

-Wcc “options” Explicitly specify options passed on to the C compiler.

All options not listed above are not recognized by goosecc, and implicitly passed on to the C
compiler.

33

6.2 Constants defined by goosecc

The following constants are automatically defined by goosecc. These can be referred from
inside the source codes.

constant value

GOOSECC 1
GOOSECC VERSION The version number (e.g. 0x010203 for version 1.2.3)
GOOSECC ARCH GDR 1 (Defined if --goose-arch gdr is given.)
GOOSECC ARCH AMD 1 (Defined if --goose-arch amd is given.)
GOOSECC ARCH NVIDIA 1 (Defined if --goose-arch nvidia is given.)

6.3 External Commands Used by goosecc

Goosecc invokes several external commands to build an executable. Users do not need to
understand this internal behavior of goosecc. For completeness, however, here we briefly
describe it.

At the beginning, goosecc scans files with extension ’.c’, given as command-line argu-
ments. If goosecc finds one or more Goose directives in a file, the file is passed to a C-language
front end (goosec2ir). If no Goose directive is found in an input file, goosecc passes it di-
rectly to the C compiler. A file with extension other than ’.c’ is always passed to the C
compiler.

Next, output of goosec2ir is fed to external commands. The commands used for each
architecture of the hardware accelerator are summarised in the following figures:

34

C Sources (foo.c bar.c ...)

goosec2ir

With
#pragma goose

No
#pragma goose

LSUMP

VSM

CC

Libraries
(libsingutil libm ...)

GRAPE-DR
API calls
(foo_gdr.c ...)

Intermediate
Representation

(foo_0.q ...)

GRAPE-DR
Assembly Sources

(foo_0.vsm ...)

GRAPE-DR
Micro Codes

(foo_0.vsmgen.[hc] ...)

An Executable (a.out)

Figure : Goosecc-internal compilation flow when --goose-arch gdr is given.
The output of goosec2ir is fed to LSUMP, a compiler for the Goose intermediate-
representation. It generates assembly codes for GRAPE-DR chip, and the codes
are processed by an assembler (vsm) to generate micro codes. The micro codes are
wrapped into a C-language description (foo 0.vsmgen.c). Then it is compiled
and linked by a C compiler (gcc), with GRAPE-DR API calls (foo gdr.c) and
GRAPE-DR control library (libsing.a) to generate an executable.

35

C Sources (foo.c bar.c ...)

goosec2ir

With
#pragma goose

No
#pragma goose

LSUMP

CC

Libraries
(libaticalcl libaticalrt
 libgcalutil libm ...)

GCAL
API calls
(foo_amd.c ...)

Intermediate
Representation

(foo_0.q ...)

ATI CAL
IL Sources

(foo_0.h ...)

An Executable (a.out)

Figure : Goosecc-internal compilation flow when --goose-arch amd is given.
The output of goosec2ir is fed to LSUMP, a compiler for the Goose intermediate-
representation. LSUMP generates ATI-IL codes, which are wrapped into a C-
language description (foo amd.h). The description is included into foo amd.c,
which contains API calls to ATI CAL. Then it is compiled and linked by a C com-
piler (gcc), with ATI-CAL libraries (libaticalrt and libaticalcl) to generate
an executable. The ATI-IL description is converted to micro codes by ATI-CAL
library at runtime.

36

C Sources (foo.c bar.c ...)

goosec2ir

With
#pragma goose

No
#pragma goose

nvcc

Libraries
(libm etc...)

CUDA
API calls
(foo_nvidia.cu ...)

CUDA kernel
(foo_0.cu ...)

An Executable (a.out)

Figure : Goosecc-internal compilation flow when --goose-arch nvidia is given.
The output of goosec2ir is fed to nvcc, a CUDA-C compiler, and then compiled
and linked with API calls to CUDA (foo nvidia.cu).

6.4 Architecture of the Hardware Accelerators

In this section, architectures of the hardware accelerators are briefly described. The description
would help users to develop efficient program targeting a given accelerator.

6.4.1 GRAPE-DR

GRAPE-DR is a hardware accelerator developed by K&F Computing Research. Co. It houses
GRAPE-DR processor chip, a custom LSI developed by the University of Tokyo and National
Astronomical Observatory of Japan. A GRAPE-DR model460 board houses one chip per
board, while a model2000 houses four.

In a single GRAPE-DR chip, 512 vector-processor elements (hereafter PE) are integrated.
Each PE has a multiplier, an adder, register files, and a local memory. It processes an instruc-
tion stream in SIMD fashion. The maximum loop length of the vector processor is 4.

Each 32 PEs are grouped into 16 broadcast blocks. Each broadcast block has a broadcast
memory, whose contents can be broadcasted to all 32 PEs in the same block.

37

Outputs of the 16 broadcast blocks are connected each other, via result-reduction tree
network. Each block outputs 128 (= 32 PEs × loop length 4) calculation results. Results
from all 16 blocks, 2048 (128 × 16) in total, are reduced into 128 by adders (or logical
operators), and written out to outside of the chip.

PE0 PE1 PE3

PE31

PE2

PE28

PE4 PE5

Broadcast Memory

Broadcast Block

Result Reduction
Network

Data

Instruction

Result

16 Broadcast Blocks

Figure : A block diagram of the GRAPE-DR chip.

A Nested ’for’ Statement (equation (2)) on GRAPE-DR:

In the following, we use a nested ’for’ statement below (the same one used in section 3.4)
to describe a calculation procedure on GRAPE-DR.

38

#pragma goose parallel for precision ("double") loopcounter(i, j) \

result(a[i][0..2], pot[i]) precision ("double")

for(i=0;i<n;i++) {

for(k=0;k<3;k++) a[i][k] = 0.0;

pot[i] = 0.0;

for(j=0;j<n;j++) {

for(k=0;k<3;k++) dx[k] = x[j][k] - x[i][k];

r2 = dx[0]*dx[0] + dx[1]*dx[1] + dx[2]*dx[2] + eps2;

rinv = rsqrt(r2);

mrinv = m[j]*rinv;

mr3inv = mrinv*rinv*rinv;

for(k=0;k<3;k++) a[i][k] += mr3inv * dx[k];

pot[i] -= mrinv;

}

}

get_cputime(<,&st);

total_time += lt;

for(i=0;i<n;i++) pot[i] += m[i]/sqrt(eps2);

(step 1) The host computer writes n variables of I/O type jp, namely x[j][0..2] and m[j],
into the on-board memory of GRAPE-DR.

(step 2) The host computer writes variables of I/O type ip, i.e., x[i][0..2], into the local
memory of each PE. Here, among n sets of x[i][0..2] for different i-s, only 128
sets are written. They are broadcasted to all 16 broadcast blocks. For each block, the
128 sets are split into 32 pieces, each contains 4 sets (i.e., loop-length of the vector
processor), and each 4 sets are written to one of the 32 PEs (PE0 ∼ PE31). Note that
the same 128 sets are written to all broadcast blocks.

(step 3) Before starting the calculation, 16 x[j][0..2] and m[j] are read out from the on-board
memory and each of them is stored into each broadcast memory. Different x[j][0..2]
and m[j] are written to different blocks.

(step 4) When the calculation starts, each broadcast memory broadcasts x[j][0..2] and m[j]

to its 32 PEs. each PE uses common x[j][0..2] and m[j] and its own x[i][0..2]

to execute the calculation. Different PEs in the same block perform calculations of
gravitational forces from the same x[j][0..2], m[j] to different x[i][0..2]. Mean-
while, another 32 PEs in a different broadcast block perform calculations from different
x[j][0..2], m[j] to the same x[i][0..2].

(step 5) Each of the 16 broadcast blocks outputs calculation results a[i][0..2] and pot[i]

for 128 different i-s. Results from 16 blocks, 128 × 16 in total, are summed up via the
result-reduction tree network and reduced to 128 results.

(step 6) Apply (step 2) to (step 5) for another 128 sets of x[i][0..2], until a[i][0..2] and
pot[i] for all i-s are obtained.

39

This procedure utilize all 512 PEs in the chip, if the input has 128 or more i-s and 16 or more
j-s. Otherwise some of the PEs are not utilized. They remain idle during the calculation.

A Single ’for’ Statement (equation (1)) on GRAPE-DR:

In the following, we use a single ’for’ statement below (the same one used in section 3.3)
to describe a calculation procedure on GRAPE-DR.

#pragma goose parallel for loopcounter(i) result(sum)

for(i=0;i<n;i++) {

x = (i+0.5)*dx;

sum += integrand(x)*dx;

}

(step 1) The host computer writes variables i of I/O type ip and dx of type shared ro into the
local memory of each PE. Among n sets of i and dx, only 128 sets are written. They
are broadcasted to all 16 broadcast blocks. For each block, the 128 sets are split into
32 pieces, each consists of 4 sets (i.e., loop-length of the vector processor), and each 4
sets are written to one of the 32 PEs (PE0 ∼ PE31). Note that the same 128 sets are
written to all broadcast blocks.

(step 2) When the calculation starts, Each PE uses i and dx to execute the calculation. All 16
broadcast block perform the same calculation.

(step 3) Each of the 16 broadcast blocks outputs calculation results for 128 different i-s. Results
from 16 blocks, 128 × 16 in total, are summed up via the result-reduction tree network
to 128. On the host computer, the results are divided by 16 and the final results are
obtained.

(step 4) Apply (step 1) to (step 3) for another 128 sets of i-s, until results for all i-s are obtained.

This procedure has at least two rooms for improvement:

• All 16 broadcast blocks are performing the same calculation. This behavior can be mod-
ified so that different block perform calculation for different i-s. With this modification,
calculations for 128 × 16 different i-s would be parallelized.

• A value of a shared ro-type variable does not depend on i. Therefore, the host
computer need to send it to the accelerator only once per calculation. But actually, it
is resent at the beginning of each outer ’for’ statement. This useless data transfer can
be removed to reduce the communication time.

These two improvements are going to be implemented soon. Even after the improvements,
however, calculation described in the form of equation (1) has a potential disadvantage to
that of equation (2), due to the amount of data transfer (cf. section 3.1).

40

6.4.2 AMD’s GPU

Optimization for AMD’s GPU is mainly performed by LSUMP. See [3] for the detail.

6.4.3 NVIDIA’s GPU

Optimization for NVIDIA’s GPU is performed using various techniques, such as efficient access
to shared memory, loop unrolling and reduction of result variables via both global and shared
memory. Some of them are described in [4] and [5].

41

7 License

Permission for use of the Goose Software Package (hereafter the ”Software”) is granted only
to owners of a copy of the Software. The Software may not be redistributed. The Software
may be modified by the owner, as long as the modified ones subject to this license agreement.

The copyright of the Software belongs to K&F Computing Research. Co. Programs and
libraries which the Software relies on have their own licenses, copyrights, and restrictions.

8 Acknowledgement

K&F Computing Research Co. would like to thank the following people for help in development
of the Goose Software Package:
Naohito Nakasato (University of Aizu) gave us a permission to use LSUMP as a compiler for
the Goose intermediate-representation. Also, he kindly and quickly responded to a lot of our
request for modification and extension to LSUMP. Junichiro Makino (National Astronomical
Observatory of Japan) gave us a permission to use VSM, an assembler for GRAPE-DR. Satoshi
Katsuyama designed the logo of Goose. We used racc, a fast and powerful parser generator
developed by Mineroh Aoki, for development of goosec2q, the C-language front end of Goose
(http://i.loveruby.net/ja/projects/racc/). Keigo Nitadori (RIKEN) kindly provided
the source code of Yebisu, an N -body simulation program, which greatly helped optimization
of goosecc for NVIDIA’s GPU.

9 Reference

[1] K. Nitadori
”New approaches to high-performance N -body simulations — high-order integrator, new par-
allel algorithm and efficient use of SIMD hardware”, doctoral thesis, 2008

[2] E. Gaburov, S. Harfst, S. P. Zwart
”SAPPORO: A way to turn your graphics cards into a GRAPE-6”, New Astronomy Vol.14,
Issue 7, p630, 2009

[3] K. Fujiwara, N. Nakasato
”Fast Simulations of Gravitational Many-body Problem on RV770 GPU”, Extended under-
graduate thesis in University of Aizu 2008, 2009,
http://xxx.yukawa.kyoto-u.ac.jp/abs/0904.3659

[4] T. Narumi, T. Hamada, F. Konishi
”Accelerator Again, - Key for Super Computing -:Acceleration of Particle-based Simulations
by Hardware Accelerator”, IPSJ Magazine Vol. 50, No.2, p129, 2009 (in Japanese)

[5] T. Hamada, T. Iitaka
”The Chamomile Scheme: An Optimized Algorithm for N-body simulations on Programmable
Graphics Processing Units”,
http://arxiv.org/abs/astro-ph/0703100

42

10 Modification History

version date description author(s)

1.3.3 17-Mar-2010 English documents updated. AK
1.3.2 05-Mar-2010 [nvidia] Performance improved for small ni. AK
1.2.0 21-Jan-2010 [nvidia] Prcecision ”double-single” supported. AK

[nvidia] Standard math functions supported.
[gdr] A bug on loopcounter fixed.

1.1.0 21-Dec-2009 GPUs (both AMD’s and NVIDIA’s) supported. AK
1.0.1α 28-Sep-2009 Documents translated from the Japanese version. AK
1.0.0α 17-Sep-2009 The software package created. A. Kawai,

T. Fukushige

Contact address for questions and bug reports:
K&F Computing Research Co. (support@kfcr.jp)

43

