
GPCIe Development Kit User’s Guide

for GPCIe DevKit version 1.4.3

Last modified at : Feb. 8, 2013

K & F Computing Research Co.
E-mail: support@kfcr.jp

Contents

1 Abstract 4

2 Contents of the Kit 4

3 Function Overview 5
3.1 Supported PCI Express device type . 5
3.2 Supported FPGA devices . 6
3.3 Structure of the Design . 7

4 Basic Usage 8
4.1 Logic Synthesis . 9
4.2 Softwares for HIB . 10

4.2.1 Software Installation (for Linux) . 10
4.2.2 Device Driver Configuration . 11
4.2.3 Functionality Test . 11
4.2.4 MTRR Set up . 14
4.2.5 HIB Control Library Usage . 16

5 Advanced Usage 17
5.1 Source Code Updation . 18
5.2 GPCIe with Faster DMA Write . 18
5.3 Usage with External PHY Chip . 18
5.4 Direct Handling of GPCIe IP Core . 18
5.5 Usage of Interrupt Function . 21

6 Details of the VHDL Entities 22
6.1 Details of Entity hib . 23

6.1.1 Header Part . 23
6.1.2 GENERIC Declaration . 23
6.1.3 PORT Declaration . 24

6.2 Details of Entity gpcie . 27
6.2.1 Header Part . 27
6.2.2 GENERIC Declaration . 27
6.2.3 PORT Declaration . 33

6.3 Details of Entity phypcs . 41
6.3.1 Header Part . 41
6.3.2 GENERIC Declaration . 41
6.3.3 PORT Declaration . 42

7 License 46
7.1 Lincense for GPCIe DS and GPCIe SP . 46
7.2 Lincense for GPCIe free-evaluation edition . 46

2

8 Modification History 47

3

1 Abstract

This document describes usage of the GPCIe Development Kit.

2 Contents of the Kit

GPCIe is a PCI Express IP core developed by K&F Computing Research Co. (hereafter KFCR). It provides
a simple interface to the backend logic designed by the user. Combining GPCIe with the backend logic,
the user can easily implement an interface to other PCI Express devices without detailed knowledge about
PCI Express protocol.

The development kit includes the following three logic designs (all logic designs are provided as VHDL
sources):

1. Host Interface Bridge (HIB) at the topmost layer of the GPCIe design hierarchy. It provides a simple
and easy-to-use interface to the backend logic designed by the user.

2. GPCIe core, which implements the Transaction layer, the Data Link layer, and the PHY MAC sub
layer defined by the PCI Express Specification, as well as the ”Application layer” built over these
three layers. PCI configuration registers and DMA controllers are built in this layer.

3. PHY, which implements the PHY PCS and PHY PMA sub layers using embedded Gigabit transceiver
of Altera’s FPGA devices.

The development kit also includes reference designs (i.e. a sample logic) to show usage of HIB, as well
as its device driver and control library which run on the host computer.

4

The kit contains the following items:

gpciepkg/
00readme This file.
00readme-j Japanese translation of this file.
00license License agreement of this package.
00license-j Japanese translation of 00license.
doc/ User’s guide and other documents.
script/ Utilities to install/bakup this package.
software/ Software to control HIB.
driver/ A source code of the HIB device driver (for Linux).
win/ A source code of the HIB device driver (for Windwos).

hibutil/ A source code of the HIB control library (for Linux).
win/ A source code of the HIB control library (for Windows).

include/ Header files for HIB control library.
lib/ HIB control library.
sample/ A sample program to show usage of HIB control library.
tool/ Utilities to manage HIB control softwares.

hardware altera/ GPCIe IP core and its reference design (for Altera’s FPGA devices)
hib.vhd Logic design of HIB.
gpcie.vhd Logic design of GPCIe core.
phy.vhd Logic design of PHY.
topdesign/ The top levels of reference designs.
synth/ Files used for synthesis of the reference design (.qpf, .qsf, .sdc).
Makefile A makefile to generate hib.vhd, gpcie.vhd, and phy.vhd from VHDL source template.
template/ VHDL source template.

hardware xilinx/ GPCIe IP core and its reference design (for Xilinx’s FPGA devices)
hib.vhd Logic design of HIB.
gpcie.vhd Logic design of GPCIe core.
topdesign/ The top levels of reference designs.
synth/ Files used for synthesis of the reference design (.qpf, .qsf, .sdc).
Makefile A makefile to generate hib.vhd and gpcie.vhd from VHDL source template.
template/ VHDL source template.

In section 3, we briefly overview GPCIe. In section 4, basic usage of GPCIe with HIB wrapper and
with embedded transceiver is shown. In section 5, we give description for advanced usage, such as directly
handle GPCIe IP core without HIB wrapper. Section 6 is devoted for detailed description of the VHDL
entities.

Hereafter, all file locations are shown as relative path from the top directory of the development kit,
gpciepkg/, unless otherwise specified.

3 Function Overview

3.1 Supported PCI Express device type

GPCIe operates as an Endpoint. It does not operate as a Switch nor a Rootport (of a Root Complex).

5

3.2 Supported FPGA devices

List of supported FPGA devices:
Device Gen1 (2.5Gbps) Gen2 (5.0Gbps)
Link width x8 x4 x1 x8 x4 x1
PIPE I/F 125MHz 250MHz

128b 64b 16b 128b 64b 16b
StratixIV GX ** ** ** - - -
CycloneIV GX . ** ** - - -
CycloneIII . . ** - - -
w/PHY chip
StratixII GX *** *** *** * * *
Arria GX *** *** *** - - -
Spartan3 . . ** - - -
w/PHY chip

*** : Supported by all editions of GPCIe.
** : Supported by GPCIe DS and GPCIe SP only (not supported by GPCIe free-evaluation edition nor by
GPCIe2).
* : Supported by GPCIe DS and GPCIe2 only (not supported by GPCIe free-evaluation edition nor by
GPCIe SP).
. : Implemented for GPCIe DS but not tested yet.

6

3.3 Structure of the Design

Backend logic designed by the user

Entity hib

HIB interface

(a local interface)

Entity gpcie

Application interface

(a local interface)

Application layer

Transaction layer

Datalink layer

PHY layer

Configuration registers

DMA controllers

PHY MAC sublayer

PIPE interface

(an interface defined by the PCI Express Specification)

Entity phypcs or
External PHY chip

PHY layer

PHY PMA sublayer

PHY PCS sublayer

PCI Express serial interface

(an interface defined by the PCI Express Specification)

To the upstream PCI Express device

GPCIe consists of three entities, namely, hib, gpcie, and phypcs.

Entity hib is located at the topmost layer, which provides a simple interface to the backend logic
designed by the user.

7

Entity gpcie implements the Transaction layer, the Data Link layer, and the PHY MAC sub layer
defined by the PCI Express Specification, as well as the ”Application layer” built over these three layers.
PCI configuration registers and DMA controllers are built in this layer.

Entity phypcs implements the PHY PCS and PHY PMA sub layers using embedded transceiver of
Altera’s FPGA devices. This entity is not used when external PHY chips are used. In such a case, the
PIPE interface of entity gpcie is connected to the PHY chips.

4 Basic Usage

In this section, basic usage of GPCIe with HIB wrapper and embedded transceiver is shown. For usage
without HIB, and usage with external PHY chips, see section 5.

In order to use GPCIe from a logic designed by the user (hereafter backend logic), create an instance
of entity hib. The backend logic communicate with the host computer (i.e. the upstream PCI Express
device) via the HIB interface. HIB bridges data transfer via the PCI Express link and that via the HIB
interface.

Backend logic

Host computer

HIB
interface

PCI Express
interface

HIB

Data transfer from the host computer to HIB is performed by Program I/O (PIO) write. Data transfer
from HIB to the host computer is performed by Direct Memory Access (DMA) write. Softwares to control
these transfers are included in the development kit. Usage of the softwares will be described later.

Data transfer between HIB and the backend logic is performed using four signals (hib we, hib data,
backend we, backend data) synchronized to a 125MHz clock clk out. The backend writes to HIB
using data bus backend data, and its enable signal backend we. HIB writes to the backend using data
bus hib data, and its enable signal hib we.

8

Write from HIB to the backend.

Write from the backend to HIB.

The backend cannot insert any delay during a write burst from HIB. The backend must receive all
data whenever hib we is asserted.

HIB has an internal buffer to temporary store data written by the backend (By default, size of the
buffer is set to 8k bytes). HIB sends contents of the buffer to the host computer, when HIB receives DMA
write request from the host. The backend should watch over the buffer status. HIB itself does not check
the buffer overflow.

DMA controllers and a PIO write controller reside in HIB. These controller can be accessed via HIB
local registers mapped to the PCI Base Address Register 0 (BAR0) space.

The host computer performs PIO write onto the BAR2 space. HIB is designed so that it can achieve
high transfer speed, if the page attribute of the BAR2 space region in use is set to write-combining mode
(see the source code template/hibctl.vhd for implementation detail). A procedure to set the page
attribute will be described in section 4.2.4.

You can find a sample logic at topdesign/ifpga xxx{8,4,1}.vhd, which shows the actual usage
of HIB (here, xxx denotes device type, such as agx, s2gx, c3 and c4gx). In the following, we describe
how to synthesise the sample logic, and how to control it from the host computer.

4.1 Logic Synthesis

Use Altera’s Quartus II for logic synthesis. Synthesis using other tools may be possible, but are not tested.
You can find Quartus Project Files (.qpf) and a Quartus Setting Files (.qsf) at:

synth/ifpga_xxx{8,4,1}.qpf

synth/ifpga_xxx{8,4,1}.qsf,

with which you can synthesize sample logics

9

topdesign/ifpga_xxx{8,4,1}.vhd

to obtain an SRAM Object Files (.sof). These files can be used to configure KFCR’s evaluation boards
GPCIe-Eval-AGX8 and GPCIe2-Eval-S2GX8.

Note that only two VHDL source files:

hib.vhd

topdesign/ifpga_xxx{8,4,1}.vhd

are used for the synthesis. Although HIB internally uses entity gpcie and phypcs, gpcie.vhd and
phy.vhd are not necessary. These are included into hib.vhd, just for user’s convenience.

4.2 Softwares for HIB

The development kit includes softwares to control HIB from the host computer. The softwares consist
of two components: HIB device driver and HIB control library. Installation procedure and usage of the
softwares are described in this section.

Note : For now, the softwares are available for Linux and Windows (GPCIe free-evaluation edition
includes software for Linux only), and other platforms are currently not supported. However, this DOES
NOT imply that design of HIB is OS dependent. HIB is designed independent of any specific OS, and
can be controlled from platforms other than Linux and Windows, if appropriate softwares are provided.

4.2.1 Software Installation (for Linux)

In order to install the softwares, run scripts/install.csh and follow its instruction.

kawai@localhost[1]>./scripts/install.csh

Host Interface Bridge (HIB) software package

installation program.

Installing HIB device driver...

...

gcc -O0 -g -I. -I../include -o hibtest hibtest.c hibutil.c -lm

gcc -O0 -g -I. -I../include -o lsgrape lsgrape.c hibutil.c -lm

done

Note that a complete source tree of the Linux kernel is required for successful installation.

10

4.2.2 Device Driver Configuration

Everytime the host computer is restarted, the HIB device driver need to be configured into the Linux
kernel. In order to do this, change directory to driver/, and type make installmodule (You need the
root permission).

[root@localhost driver]# make installmodule

./install0.csh

-- install module hibdrv --

hibdrv: 1 HIB(s) found.

rm -f /dev/hibdrv[0-9]

/sbin/insmod -f hibdrv.ko

mknod /dev/hibdrv0 c 253 0

chgrp wheel /dev/hibdrv0

chmod 666 /dev/hibdrv0

crw-rw-rw- 1 root wheel 253, 0 Jul 9 12:59 /dev/hibdrv0

-- done --

This should plug-in the HIB device driver hibdrv into the kernel. You can use a command /sbin/lsmod

to check the driver status. Output of the command should have a line that contains a word hibdrv.

kawai@localhost[2]>lsmod

Module Size Used by

hibdrv 39608 0

...

Once the device driver is properly configured, softwares running on the userland can access to HIB via the
driver.

4.2.3 Functionality Test

A command hibutil/hibtest can be used to check functionality of the HIB installed into the system.
Run hibtest without argument to show its usage:

kawai@localhost[3]>./hibtest

usage: ./hibtest <test_program_ID>

0) show contents of config & HIB-local registers [devid]

1) reset DMA and FIFO [devid]

2) clear HIB-internal FIFO [devid]

3) show DMA status [devid]

4) read config register <addr> [devid]

5) write config register <addr> <val> [devid]

6) read HIB local registers mapped to BAR0 <addr> [devid]

11

7) write HIB local registers mapped to BAR0 <addr> <val> [devid]

8) read backend memory space mapped to BAR1 <addr> [devid]

9) write backend memory space mapped to BAR1 <addr> <val> [devid]

10) check DMA read/write function <size> <sendfunc> [devid] (host <-> HIB)

11) measure DMA performance <sendfunc> [devid] (host <-> HIB)

12) measure DMA write performance [devid] (host <- HIB; bypass internal FIFO)

13) measure DMA read performance <sendfunc> [devid] (host -> HIB; bypass internal FIFO)

14) reset backend [devid]

15) raw PIO r/w & DMA r/w [devid]

16) measure DMA performance with multiple HIBs <sendfunc> <# of hibs>

(host <-> HIBs internal FIFO)

17) measure DMA write performance with multiple HIBs <# of hibs> [devid offset]

(host <- HIBs; bypass internal FIFO)

18) measure DMA read performance with multiple HIBs <sendfunc> <# of hibs> [devid offset]

(host -> HIBs; bypass internal FIFO)

19) erase configuration ROM (EPCS64) [devid]

20) write .rpd to configuration ROM (EPCS64) <rpd-file> [devid]

21) read configuration ROM ID (0x10:EPCS1 0x12:EPCS4 0x14:EPCS16 0x16:EPCS64) [devid]

22) set pipeline clock frequency to (PCI-X_bus_freq * N / M) <N> <M> [devid]

Run hibtest 0 to show contents of the PCI configuration registers of the HIB:

kawai@localhost[4]>./hibtest 0

hib0:

protocol : PCIe

link width negotiated : x8

supported : x8

link speed negotiated : 2.5 Gb/s

supported : 2.5 Gb/s

max payload size negotiated : 128 byte

supported : 256 byte

max read request size : 256 byte

configuration register:

0x00000000: 0x0e701b1a

0x00000004: 0x00100007

0x00000008: 0xff000001

0x0000000c: 0x00000008

0x00000010: 0xdf608008 0xdf608000

0x00000014: 0xdf610008 0xdf610000

0x00000018: 0xdf600008 0xdf600000

0x0000001c: 0x00000000 0x00000000

0x00000020: 0x00000000

0x00000024: 0x00000000

0x00000028: 0x00000000

0x0000002c: 0x0e701b1a

0x00000030: 0x00000000

12

0x00000034: 0x00000080

0x00000038: 0x00000000

0x0000003c: 0x000000ff

PCI Express Capability Register:

0x00000080: 0x00110010

0x00000084: 0x00000001

0x00000088: 0x00001000

0x0000008c: 0x00000481

0x00000090: 0x00810000

Run hibtest 10 10 1 to test loopback transfer. This will send 10 * 8 byte data from the host computer
by PIO write transfer. The HIB receives the data, and then send it back to the host computer by DMA
write transfer. The host computer compares the data transmitted and received, and print OK if these are
completely matched, print NG otherwise.

kawai@localhost[5]>./hibtest 10 10 1

check hib[0] DMA read/write (host <-> HIB internal FIFO)

size 10

hib[0] PIO write, and then DMA write (host <-> HIB internal FIFO)

clear DMA buf...

DMA read size: 10 words (80 bytes)

will dmar...

rbuf[0000]: 0x1111111111111111 wbuf[0000]: 0x1111111111111111

rbuf[0001]: 0x2222222222222222 wbuf[0001]: 0x2222222222222222

rbuf[0002]: 0x3333333333333333 wbuf[0002]: 0x3333333333333333

rbuf[0003]: 0x4444444444444444 wbuf[0003]: 0x4444444444444444

rbuf[0004]: 0x5555555555555555 wbuf[0004]: 0x5555555555555555

rbuf[0005]: 0x6666666666666666 wbuf[0005]: 0x6666666666666666

rbuf[0006]: 0x123456789abc0006 wbuf[0006]: 0x123456789abc0006

rbuf[0007]: 0x123456789abc0007 wbuf[0007]: 0x123456789abc0007

rbuf[0008]: 0x123456789abc0008 wbuf[0008]: 0x123456789abc0008

rbuf[0009]: 0x123456789abc0009 wbuf[0009]: 0x123456789abc0009

---- transfer size reached ----

rbuf[0010]: 0x123456789abc000a wbuf[0010]: 0xfedcba987654000a

rbuf[0011]: 0x123456789abc000b wbuf[0011]: 0xfedcba987654000b

done

10 words (80 bytes).

OK

Run hibtest 12 to measure performance of the DMA write transfer (write from HIB to the host).

kawai@localhost[6]>./hibtest 12

13

hib[0] DMA write (host <- HIB)

size: 1024 DMA write: 1.562367 sec 512.043597 MB/s

size: 2048 DMA write: 1.101087 sec 726.554697 MB/s

size: 4096 DMA write: 0.857353 sec 933.104598 MB/s

size: 8192 DMA write: 0.739353 sec 1082.027209 MB/s

size: 16384 DMA write: 0.680854 sec 1174.995203 MB/s

size: 32768 DMA write: 0.651100 sec 1228.690060 MB/s

Run hibtest 13 1 to measure performance of the PIO write transfer (write from the host to HIB).

kawai@localhost[7]>./hibtest 13 1

hib[0] PIO write (host -> HIB)

size: 64 PIO write: 2.037641 sec 392.610858 MB/s

size: 128 PIO write: 1.233335 sec 648.647763 MB/s

size: 256 PIO write: 0.822831 sec 972.253211 MB/s

size: 512 PIO write: 0.639186 sec 1251.591587 MB/s

size: 1024 PIO write: 0.620417 sec 1289.455073 MB/s

size: 2048 PIO write: 0.620460 sec 1289.365885 MB/s

size: 4096 PIO write: 0.620398 sec 1289.495211 MB/s

size: 8192 PIO write: 0.620425 sec 1289.438721 MB/s

size: 16384 PIO write: 0.620416 sec 1289.457550 MB/s

Usage of hibtest not shown above, see the source code hibutil/hibtest.c.

4.2.4 MTRR Set up

The host computer performs PIO write via the BAR2 space. HIB is designed so that it can achieve high
transfer speed, if the page attribute of the BAR2 space region in use is set to the write-combining mode.
If the mode is not set, the speed would be reduced to 20% or lower of the peak.

The mode of the BAR2 space can be set via MTRR (memory type range register) of the host computer.
In order to set the mode to write-combining, run scripts/setmtrr.csh (You need the root permission).
The script searches for a free (i.e. not used by other device) MTRR, and using that MTRR, set the BAR2
space to the write-combining mode.

[root@localhost driver]# ./setmtrr.csh

Searching for HIB(s)... Found 0 PCI-X HIB(s). Found 1 PCIe HIB(s).

Found 1 HIB(s) in total.

Trying to set 1 MTRR(s)...

echo "base=0xdf600000 size=0x1000 type=write-combining" > /proc/mtrr

Done.

current setting of MTRRs:

reg00: base=0x00000000 (0MB), size=2048MB: write-back, count=1

reg01: base=0x80000000 (2048MB), size=1024MB: write-back, count=1

14

reg02: base=0x100000000 (4096MB), size=200704MB: write-back, count=1

reg03: base=0x200000000 (8192MB), size=1024MB: write-back, count=1

reg04: base=0xdf600000 (3574MB), size= 4KB: write-combining, count=1

The output should include a line containing ”base=0xAAAAAAAA (XXXXMB), size = 4kB: write-
combining”, where AAAAAAAA denote the start address of the BAR2 space of HIB. The value can
be checked by hibtest 4 18:

kawai@localhost[8]>../hibutil/hibtest 4 18

hib[0] config 0x00000018: 0xdf600008

Note1: The BAR2 space may not be set up to the write-combining mode, if, for example, all 8 existing
MTRRs are already used by other devices, or, the total size of the main memory exceeds 4GB and the
chipset cannot handle I/O remapping. Depending on the chipset, this problem may be avoided (e.g. by
setting I/O remapping of the main memory to address higher than 4GB, or setting memory hole granularity
to a larger value). Refer to the manual of the chipset or the mother board.

Note2: MTRR set up may not be necessary if the Linux kernel version is 2.6.26 or higher, and PAT
(page attribute table) support is enabled. In order to see if it is enabled or not, look inside the Linux header
files e.g., /usr/src/linux/include/linux/autoconf.h and check if CONFIG X86 PAT is defined or
not.

Running hibtest 13 1 before and after the write-combining mode set up, you can see improvement
of the PIO write performance:

Before the write-combining mode set up (x8 link) :

kawai@localhost[9]>./hibtest 13 1

hib[0] PIO write (host -> HIB)

size: 64 PIO write: 7.319836 sec 109.292068 MB/s

size: 128 PIO write: 6.857664 sec 116.657799 MB/s

size: 256 PIO write: 6.597888 sec 121.250922 MB/s

size: 512 PIO write: 6.458101 sec 123.875423 MB/s

size: 1024 PIO write: 6.404411 sec 124.913905 MB/s

size: 2048 PIO write: 6.397210 sec 125.054514 MB/s

size: 4096 PIO write: 6.387041 sec 125.253617 MB/s

size: 8192 PIO write: 6.390173 sec 125.192230 MB/s

size: 16384 PIO write: 6.384816 sec 125.297269 MB/s

After the write-combining mode set up (x8 link) :

kawai@localhost[10]>./hibtest 13 1

hib[0] PIO write (host -> HIB)

size: 64 PIO write: 2.037641 sec 392.610858 MB/s

size: 128 PIO write: 1.233335 sec 648.647763 MB/s

size: 256 PIO write: 0.822831 sec 972.253211 MB/s

size: 512 PIO write: 0.639186 sec 1251.591587 MB/s

15

size: 1024 PIO write: 0.620417 sec 1289.455073 MB/s

size: 2048 PIO write: 0.620460 sec 1289.365885 MB/s

size: 4096 PIO write: 0.620398 sec 1289.495211 MB/s

size: 8192 PIO write: 0.620425 sec 1289.438721 MB/s

size: 16384 PIO write: 0.620416 sec 1289.457550 MB/s

4.2.5 HIB Control Library Usage

HIB control library provides an API to handle data transfer between the host computer and HIB. In order
to use the library, include a header file include/hibutil.h into your own source code (written in C or
C++), and link lib/libhib.a.

Descriptions for substantial functions provided by the library are given below. For usages of other
functions, look inside the source code hibutil/hibutil.c.

Hib* hib openMC(int devid) Obtains access permission of a HIB that has a device ID devid. If
the HIB is already obtained by another process, this function blocks. The device ID devid is a small
integer uniquely assigned to each HIB. When n HIBs are installed in the system, one of device IDs from
0 to n− 1 is assigned to each of them.

hib openMC(void) returns a pointer to a variable of type Hib. The variable stores information
necessary to manage the HIB device opened. Some API functions require the pointer as their argument
(cf. hib dmawMC).

void hib closeMC(int devid) Release access permission of a HIB that has a device ID devid, so
that other process can obtain it.

void hib piowMC(int devid, int size, UINT64 *buf) writes data stored in the main memory
to a HIB that has a device ID devid. Size of the data is given by size (in 8-byte unit), and the start
address is given by buf.

For the buffer pointed by buf, you can specify a memory region allocated by a usual method, such as
an array of type UINT64 statically allocated, or a region dynamically allocated by malloc().

void hib start dmawMC(int devid, int size, UINT64 *buf) sends a DMA-write request to a
HIB that has a device ID devid, which will kick off a data transfer from the HIB to the host. Size of the
data is given by size (in 8-byte unit), and the address of the receiving buffer is given by buf.

Note that you CANNOT specify an arbitrary memory region as the receiving buffer. Only a memory
region pointed to by h->dmaw buf, or h->dmaw buf+offset can be used as buf. Here, h denotes a
pointer to a variable of type Hib returned by hib openMC(), and the value of offset+size should not
exceed 32k byte. The address pointed by h->dmaw buf is a continuous memory region allocated inside
the Linux kernel space, which is mapped to the userland. In order to store the data received from the
HIB into a buffer in the userland, such as a statically allocated array, or a region dynamically allocated by
malloc(), you need to copy the data from h->dmaw buf to the buffer.

16

int hib finish dmawMC(int devid) waits for completion of a DMA write transfer started by
hib start dmawMC().

UINT32 hib config readMC(int devid, UINT32 addr) reads the value of the PCI Configura-
tion Register address addr of a HIB that has a device ID devid.

void hib config writeMC(int devid, UINT32 addr, UINT32 value) writes a value to the
PCI Configuration Register address address of a HIB that has a device ID devid.

UINT32 hib mem readMC(int devid, UINT32 addr) reads the value of the HIB Local Register
address addr of a HIB that has a device ID devid. See template/hibctl.vhd for the address map of
the Local Register.

void hib mem writeMC(int devid, UINT32 addr, UINT32 value) writes a value to the
HIB Local Register address address of a HIB that has a device ID devid.

An Example Program using the HIB Control Library :

You can find an example of application program at sample/loopback.c, which
internally uses the HIB control library. It performs a simple loopback transfer: It
transmit 10 * 8 byte data from the host computer. HIB receives the data, and
then send it back to the host computer. The host computer compares the data
transmitted and received, and report the result.

kawai@localhost[9]>./loopback

0x0000 sent : 0x123456789abc0000 received : 0x123456789abc0000 OK

0x0001 sent : 0x123456789abc0001 received : 0x123456789abc0001 OK

0x0002 sent : 0x123456789abc0002 received : 0x123456789abc0002 OK

0x0003 sent : 0x123456789abc0003 received : 0x123456789abc0003 OK

0x0004 sent : 0x123456789abc0004 received : 0x123456789abc0004 OK

0x0005 sent : 0x123456789abc0005 received : 0x123456789abc0005 OK

0x0006 sent : 0x123456789abc0006 received : 0x123456789abc0006 OK

0x0007 sent : 0x123456789abc0007 received : 0x123456789abc0007 OK

0x0008 sent : 0x123456789abc0008 received : 0x123456789abc0008 OK

0x0009 sent : 0x123456789abc0009 received : 0x123456789abc0009 OK

5 Advanced Usage

In this section, advanced usages of GPCIe are described. In section 5.1, a procedure to apply modifications
to the source code of the GPCIe logic design is described. Section 5.2 suggest an alternative design of
GPCIe to improve DMA write performance. In section 5.3, necessary modifications to the HIB design are
described, in order to use external PHY chips instead of the embedded transceivers. In section 5.4, a
method to directly (i.e., without HIB wrapper) control GPCIe IP core is given. In section 5.5, usage of
interrupt function is described.

17

5.1 Source Code Updation

Source code of GPCIe is split into multiple VHDL files in template/ directory. For user’s convenience, all
files which entity hib relies on are packed into a single file hib.vhd. Similarly, files necessary for entity
gpcie and phypcs are packed into gpcie.vhd and phy.vhd, respectively.

When you modified the source code, change directory to gpciepkg and run make for updation, so
that the modifications are reflected to hib.vhd, gpcie.vhd, and phy.vhd.

5.2 GPCIe with Faster DMA Write

Source code of GPCIe in template/ directory includes highly optimized modules for DMA write transfer.
However, these modules are not used by default, since these modules require special care for timing, in
order to satisfy timing constraints on Arria GX. In order to activate these modules, change directory to
gpciepkg and run make fast. This will generate hib0.vhd and gpcie0.vhd. These are the optimized
version of hib.vhd and gpcie0.vhd, respectively. At the best case, the speed would be improved about
20% for DMA write transfer. The speeds of PIO write transfer and DMA read transfer are not affected.

5.3 Usage with External PHY Chip

In order to use external PHY chips instead of the embedded transceivers, you need to modify entity hib

defined in template/hibtop.vhd (The modified logic is included in GPCIe DS and GPCIe SP package,
but not in GPCIe free-evaluation edition).

hibctlhib

gpcie

phy125

ifpga
(topmost entity)

hibctlhib

gpcie

external PHY chip

PIPE interface PIPE interface

ifpga
(topmost entity)

Entity hib internally uses instances of three entities: hibctl, gpcie, and phypcs. You need two
modifications for these instances. First, remove the instance of phypcs, and also remove the PIPE
interface connection between phypcs and gpcie. The instance phypcs is a wrapper for the embedded
transceivers that implements PHY PCS and PHY PMA sub layers. These layers are realized by the external
PHY chips, and thus phypcs is no longer necessary.

Next, connect the PIPE interface of the instance gpcie to that of the PHY chips. To do this, you
need to hardwire I/O pins of the PHY chips and the FPGA device. Then assign the I/O pins to the ports
of the topmost entity, and connect these ports to corresponding ports of the hib instance, as well as those
of the gpcie instance.

5.4 Direct Handling of GPCIe IP Core

Although the HIB wrapper provides a simple interface to the backend logic, it cannot take full advantage
of GPCIe functionalities. For example, in order to:

• implement PIO read/write transfer with address, byte enable, and wait control,

18

• assign all Base Address Space (BAR0..5) to arbitrary purpose,

• use multiple DMA channels (8 channels at max) or

• issue an interrupt (see section 5.5),

you need to handle GPCIe IP core directly (i.e., without HIB) from the backend logic. For this purpose,
instantiate entity gpcie (which is defined in gpcie.vhd) in your design. Then, in order to use the em-
bedded transceivers, instantiate entity phypcs (defined in phy.vhd) also, and connect the PIPE interface
of these two instances each other.

The backend can communicate with GPCIe IP core in two different transfer modes, namely, slave
read/write transfer and master read/write transfer. In the slave read/write transfer, GPCIe read/write
from/to the backend following PIO read/write requests from the host computer. In the master read/write
transfer, the backend read/write from/to GPCIe following requests from DMA controllers. Timing charts
for these transfers are shown below. A timing chart for DMA controller is alow shown. See section 6 for
the meanings of the signals in the charts.

Slave write (GPCIe writes to the backend): GPCIe requests a write transfer by
asserting slv writereq. The backend accept the request by asserting slv accept
when ready. GPCIe starts the write transfer immediately after the clock cycle
slv accept is asserted. The data is transfered from the host computer to the PCIe
device.

19

Slave read (GPCIe reads from the backend): GPCIe requests a read transfer by
asserting slv readreq. The backend accept the request by asserting slv accept
when ready. GPCIe starts the read transfer immediately after the clock cycle
slv accept is asserted. The data is transfered from the PCIe device to the host
computer.

Master read (The backend reads from GPCIe): The data is transfered from the
host computer to the PCIe device.

20

Master write (The backend write to GPCIe): The data is transfered from the
PCIe device to the host computer.

Write to registers of the DMA controller: Set parameters to registers of the
DMA controller. The DMA transfer starts when the data size is set by asserting
dma control(n)(3). Here, n denotes channel number of the DMA controller.

5.5 Usage of Interrupt Function

GPCIe supports interrupt both with INTx and MSI (GPCIe DS and GPCIe SP only. Not supported by
GPCIe free-evaluation edition).

For the interrupt handling, the following ports are provided to the backend logic:

int_req : in std_logic;

int_ack : out std_logic;

The backend asserts int req to request interrupt. GPCIe issues an interrupt, and then asserts int ack.
The backend should keep int req asserted until int ack is asserted, and deassert int req as soon as
int ack is asserted. When int req is deasserted, GPCIe deasserts int ack to indicate it is ready for the
next request. The backend have to wait for deassertion of int ack before requesting the next interrupt.

21

In ordet to use interrupt, the following generic parameters of the entity gpcie must be set up accord-
ingly:

Interrupt with INTx

• Set generic parameter CFG COMMAND INIT bit 10 of the entity gpcie to 1, so that INTx interrupt
is enabled.

• Set generic parameter CFG INT PIN INIT of the entity gpcie to specify the interrupt pin.

interrupt pin parameter value

INTA 0000 0001
INTB 0000 0010
INTC 0000 0011
INTD 0000 0100
do not use 0000 0000

• The Root Complex assign IRQ to the device during the boot process. The assigned value is set to
address 3Ch of the PCI Configuration Register.

Interrupt with MSI

MSI offers more flexible method of interrupt compared to INTx. Using MSI, the device can issue a
memory write command to an arbitrary address of the Root Complex. However, it should be noted that
this method may not be supported by all the hosts (i.e, Root Complexes) on the market.

In order to use MSI, set generic parameter CFG COMMAND INIT bit 10 of the entity gpcie to 0, so that
INTx interrupt is disabled. In order to see whether the Root Complex supports MSI or not, check ther 0th
bit of the MSI Control Register. During the boot process, the bit is set to 1 by the Root Complex. The
memory write command is issued using address and data stored in MSI Address and MSI Data registers,
respectively. In the case of GPCIe, the MSI Control Register, MSI Address and MSI Data are mapped to
the PCI Configuration Register as follows:

PCI Conf. Reg. MSI Capability Structure
byte address 31:24 23:16 15:08 07:00

50 MSI Control Register next pointer(00h) capability ID(05h)
54 MSI Address (32 bit)
58 0000h MSI Data (16 bit)

6 Details of the VHDL Entities

VHDL entities hib, gpcie, and phypcs have various generic parameters and I/O ports. In the following,
description for their substantial generic parameters and all I/O ports are given.

22

6.1 Details of Entity hib

6.1.1 Header Part

For successful compilation, you need to use a package gpciepkg, as well as some other packages defined
in standard libraries. The package gpciepkg is defined in gpciepkg.vhd.

Example :

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use work.gpciepkg.all;

6.1.2 GENERIC Declaration

Parameter name : DEVICE
Type : string
Default value : ”Arria GX”

Function : Targeting FPGA device. Should be set to ”Arria GX” or
”Stratix II GX”.

Parameter name : GENERATION
Type : natural
Default value : 1

Function : Supported speed of the PCI Express link. The values 1 and
2 indicates 2.5GHz (Gen1) and 5.0GHz (Gen2) operation,
respectively.

Parameter name : NLANE
Type : natural
Default value : –

Function : Link width of the PCI Express link. Should be set to 1, 4
or 8.

23

Parameter name : PIOWBUF DEPTH
Type : natural
Default value : 8

Function : Depth of the PIO write buffer. The default value 8 denotes
256 (= 28) words, that is, 512, 2048, and 4096 bytes for
x1, x4, and x8 link, respectively. User rarely need to modify
this value, although it affects the performance of PIO write
transfer.

Parameter name : TXBUF DEPTH
Type : natural
Default value : 10

Function : Depth of the backend data receiving buffer. Default value
10 denotes 1024 (= 210) words, that is, 2048, 8192, and
16384 bytes for x1, x4, and x8 link, respectively. In order
to transfer data exceeding this size in a single DMA write,
the backend should implement a flow-control logic to avoid
buffer overflow.

Parameter name : USE CLK32
Type : natural
Default value : 1

Function : Should be set to 1 whenever possible. You may set this
value to 0 if you cannot supply clk32 input. Then HIB try
to boot without using clk32, at the risk of malfunction.

6.1.3 PORT Declaration

Port name : phy linkup
Type : std logic
Direction : out
Function : Asserted when the PCIe link training in the PHY layer is

successfully completed.

Port name : dl linkup
Type : std logic
Direction : out
Function : Asserted when the PCIe link initialization in the Data Link

layer is successfully completed.

24

Port name : linkspeed
Type : std logic vector(3 downto 0)
Direction : out
Function : Speed of the PCI Express link actually negotiated. The

values ”0001” and ”0010” indicates 2.5GHz (Gen1) and
5.0GHz (Gen2) operation, respectively.

Port name : clk100 ext
Type : std logic
Direction : in
Function : A 100MHz differential input used as a reference clock of

the Gigabit transceivers.

Port name : clk32
Type : std logic
Direction : in
Function : A clock input used to generate timing for power on reset

signals and transceiver calibration. The clock frequency
can be any value in the range of 10MHz-125MHz.

Port name : mperst
Type : std logic
Direction : in
Function : An active low reset signal.

Port name : rx in
Type : std logic vector(NLANE-1 downto 0)
Direction : in
Function : Input from the PCI Express high-speed serial receiver port.

Port name : tx out
Type : std logic vector(NLANE-1 downto 0)
Direction : out
Function : Output to the PCI Express high-speed serial transmitter

port.

25

Port name : clk out
Type : std logic
Direction : out
Function : A 125MHz clock output generated in the PHY PCS layer

based on clk100 ext input. All parallel signals inside HIB
are synchronized to this clock.

Port name : wake
Type : std logic
Direction : out
Function : Not used.

Port name : hib we
Type : std logic
Direction : out
Function : Write enable for hib data, which is driven by HIB.

Port name : hib data
Type : std logic vector(NLANE*16-1 downto 0)
Direction : out
Function : Data output from HIB to the backend logic.

Port name : backend we
Type : std logic
Direction : in
Function : Write enable for backend data, which is driven by the

backend logic.

Port name : backend data
Type : std logic vector(NLANE*16-1 downto 0)
Direction : in
Function : Data input from the backend logic to HIB.

Port name : reset backend
Type : std logic
Direction : out
Function : Active high reset output to the backend logic.

26

Port name : board info
Type : std logic vector(31 downto 0)
Direction : in
Function : Initial value of a mailbox register board info. This

register can be read/written by the host computer. It can
be used by the backend logic for an arbitrary purpose.

6.2 Details of Entity gpcie

6.2.1 Header Part

For successful compilation, you need to use a package gpciepkg, as well as some other packages defined
in standard libraries. The package gpciepkg is defined in gpciepkg.vhd.

Example :

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

use work.gpciepkg.all;

6.2.2 GENERIC Declaration

The default values of generic parameters of entity gpcie are optimized for HIB. You may
overwrite them depending on your design requirement.

Parameter name : GENERATION
Type : natural
Default value : 1

Function : Supported speed of the PCI Express link. The values 1 and
2 indicates 2.5GHz (Gen1) and 5.0GHz (Gen2) operation,
respectively.

Parameter name : NLANE
Type : natural
Default value : 8

Function : Link width of the PCI Express link. Should be set to 1, 4
or 8.

27

Parameter name : NDMACH
Type : natural
Default value : 2

Function : The number of DMA channels to be implemented. At max-
imum, eight channels can be implemented. However, op-
erations only with up to two channels are tested so far.

Parameter name : MAX READ REQ SIZE
Type : natural
Default value : 256

Function : The maximum read request size in byte.

Parameter name : MAX PAYLOAD
Type : natural
Default value : 256

Function : The maximum payload size supported (in byte unit). The
maximum payload size actually used may be smaller than
the value set here. The actual size is determined through
negotiation with the upstream device at link initialization
phase.

Parameter name : CA PH VC0 INIT
Type : natural
Default value : 16

Function : Depth of the Rx Flow Control buffer (posted, header). The
value is specified by the number of the Transaction-Layer
packets (TLPs) which can be stored.

Parameter name : CA PD VC0 INIT
Type : natural
Default value : 64

Function : Depth of the Rx Flow Control buffer (posted, data) in 16-
byte unit.

28

Parameter name : CA NPH VC0 INIT
Type : natural
Default value : 2

Function : Depth of the Rx Flow Control buffer (non-posted, header).
The value is specified by the number of the TLPs which
can be stored.

Parameter name : CA NPD VC0 INIT
Type : natural
Default value : 16

Function : Depth of the Rx Flow Control buffer (non-posted, data) in
16-byte unit.

Parameter name : CA CH VC0 INIT
Type : natural
Default value : 2

Function : Depth of the Rx Flow Control buffer (completion, header).
The value is specified by the number of the TLPs which
can be stored.

Parameter name : CA CD VC0 INIT
Type : natural
Default value : 16

Function : Depth of the Rx Flow Control buffer (completion, data) in
16-byte unit.

Parameter name : CL PH VC0 INIT
Type : natural
Default value : 16

Function : Depth of the Tx Flow Control buffer (posted, header). The
value is specified by the number of the TLPs which can be
stored.

Parameter name : CL PD VC0 INIT
Type : natural
Default value : 64

Function : Depth of the Tx Flow Control buffer (posted, data) in 16-
byte unit.

29

Parameter name : CL NPH VC0 INIT
Type : natural
Default value : 2

Function : Depth of the Tx Flow Control buffer (non-posted, header).
The value is specified by the number of the TLPs which
can be stored.

Parameter name : CL NPD VC0 INIT
Type : natural
Default value : 16

Function : Depth of the Tx Flow Control buffer (non-posted, data) in
16-byte unit.

Parameter name : CL CH VC0 INIT
Type : natural
Default value : 2

Function : Depth of the Tx Flow Control buffer (completion, header).
The value is specified by the number of the TLPs which
can be stored.

Parameter name : CL CD VC0 INIT
Type : natural
Default value : 16

Function : Depth of the Tx Flow Control buffer (completion, data) in
16-byte unit.

Parameter name : CFG VENDOR ID INIT
Type : std logic vector(15 downto 0)
Default value : x”1b1a”

Function : Vendor ID of KFCR. Do not modify (see the license agree-
ment in section 7).

Parameter name : CFG DEVICE ID INIT
Type : std logic vector(15 downto 0)
Default value : x”0e70”

Function : Device ID. Default value 0E70h is the one KFCR assigned
to HIB.

30

Parameter name : CFG REVISION ID INIT
Type : std logic vector(7 downto 0)
Default value : x”01”

Function : Revision ID.

Parameter name : CFG CLASS CODE INIT
Type : std logic vector(23 downto 0)
Default value : x”ff0000”

Function : PCI class code.

Parameter name : CFG BAR0 INIT
Type : std logic vector(31 downto 0)
Default value : x”ffff8008”

Function : Initial value of PCI Base Address Register0 (BAR0). The
default value x”ffff8008” denotes 32kbyte, prefetchable,
32-bit address, memory space.

Parameter name : CFG BAR1 INIT
Type : std logic vector(31 downto 0)
Default value : x”fffff008”

Function : Initial value of PCI Base Address Register1 (BAR1). The
default value x”fffff008” denotes 4kbyte, prefetchable, 32-
bit address, memory space.

Parameter name : CFG BAR2 INIT
Type : std logic vector(31 downto 0)
Default value : x”ffff8008”

Function : Initial value of PCI Base Address Register2 (BAR2). The
default value x”ffff8008” denotes 32kbyte, prefetchable,
32-bit address, memory space.

Parameter name : CFG BAR3 INIT
Type : std logic vector(31 downto 0)
Default value : x”00000000”

Function : Initial value of PCI Base Address Register3 (BAR3). The
default value x”00000000” denotes this register is not used.

31

Parameter name : CFG BAR4 INIT
Type : std logic vector(31 downto 0)
Default value : x”00000000”

Function : Initial value of PCI Base Address Register4 (BAR4). The
default value x”00000000” denotes this register is not used.

Parameter name : CFG BAR5 INIT
Type : std logic vector(31 downto 0)
Default value : x”00000000”

Function : Initial value of PCI Base Address Register5 (BAR5). The
default value x”00000000” denotes this register is not used.

Parameter name : CFG BAR ROM INIT
Type : std logic vector(31 downto 0)
Default value : x”00000000”

Function : Initial value of PCI Expansion ROM Base Address. The
default value x”00000000” denotes this register is not used.

Parameter name : CFG SUB VENDOR ID INIT
Type : std logic vector(15 downto 0)
Default value : x”1b1a”

Function : Sub vendor ID.

Parameter name : CFG SUB DEVICE ID INIT
Type : std logic vector(15 downto 0)
Default value : x”0e70”

Function : Sub device ID.

Parameter name : CFG INT PIN INIT
Type : std logic vector(7 downto 0)
Default value : x”00”

Function : INTx interrupt pin to be used. See section 5.5 for the
usage.

32

6.2.3 PORT Declaration

Port name : phy linkup
Type : std logic
Direction : out
Function : Asserted when the PCIe link training in the PHY layer is

successfully completed.

Port name : dl linkup
Type : std logic
Direction : out
Function : Asserted when the PCIe link initialization in the Data Link

layer is successfully completed.

Port name : linkspeed
Type : std logic vector(3 downto 0)
Direction : out
Function : Speed of the PCI Express link actually negotiated. The

values ”0001” and ”0010” indicates 2.5GHz (Gen1) and
5.0GHz (Gen2) operation, respectively.

Port name : clk
Type : std logic
Direction : in
Function : A 125MHz clock input supplied from the PHY PCS layer.

All I/O ports including PIPE interface are synchronized to
this clock.

Port name : rstn
Type : std logic
Direction : in
Function : An active low reset signal.

The PIPE Interface

Port name : phystatus
Type : std logic
Direction : in
Function : Refer to the specification of the PIPE Interface.

33

Port name : powerdown
Type : std logic vector(1 downto 0)
Direction : out
Function : Refer to the specification of the PIPE Interface.

Port name : txdetectrx
Type : std logic
Direction : out
Function : Refer to the specification of the PIPE Interface.

Port name : txdata
Type : std logic vector(NLANE*16-1 downto 0)
Direction : out
Function : Refer to the specification of the PIPE Interface.

Port name : txdatak
Type : std logic vector(NLANE*2-1 downto 0)
Direction : out
Function : Refer to the specification of the PIPE Interface.

Port name : txelecidle
Type : std logic vector(NLANE-1 downto 0)
Direction : out
Function : Refer to the specification of the PIPE Interface.

Port name : txcompl
Type : std logic vector(NLANE-1 downto 0);
Direction : out
Function : Refer to the specification of the PIPE Interface.

Port name : rxpolarity
Type : std logic vector(NLANE-1 downto 0)
Direction : out
Function : Refer to the specification of the PIPE Interface.

Port name : rxdata
Type : std logic vector(NLANE*16-1 downto 0)
Direction : in
Function : Refer to the specification of the PIPE Interface.

34

Port name : rxdatak
Type : std logic vector(NLANE*2-1 downto 0)
Direction : in
Function : Refer to the specification of the PIPE Interface.

Port name : rxvalid
Type : std logic vector(NLANE-1 downto 0)
Direction : in
Function : Refer to the specification of the PIPE Interface.

Port name : rxelecidle
Type : std logic vector(NLANE-1 downto 0)
Direction : in
Function : Refer to the specification of the PIPE Interface.

Port name : rxstatus
Type : std logic vector(NLANE*3-1 downto 0)
Direction : in
Function : Refer to the specification of the PIPE Interface.

The Application Interface (as a slave device)

Port name : slv readreq
Type : std logic
Direction : out
Function : Read request. The read will start right at the clock cycle

when slv accept is asserted.

Port name : slv writereq
Type : std logic
Direction : out
Function : Write request. The write will start right at the clock cycle

when slv accept is asserted.

Port name : slv accept
Type : std logic vector(downto 0)
Direction : in
Function : Accept for read/write request.

35

Port name : slv read
Type : std logic
Direction : out
Function : When this is asserted, the backend logic should supply data

to slv datain in the next clock cycle.

Port name : slv write
Type : std logic
Direction : out
Function : Indicates data is present on slv dataout.

Port name : slv bar
Type : std logic vector(6 downto 0)
Direction : out
Function : Base address space from/to which current transaction is

reading/writing.

Port name : slv addr
Type : std logic vector(63 downto 0)
Direction : out
Function : Local address from/to which current transaction is read-

ing/writing.

Port name : slv bytevalid
Type : std logic vector(NLANE*2-1 downto 0)
Direction : out
Function : Byte enables for slv dataout. Valid only for write trans-

action.

Port name : slv bytecount
Type : std logic vector(11 downto 0)
Direction : out
Function : Remaining byte count for current transaction.

Port name : slv dataout
Type : std logic vector(NLANE*16-1 downto 0)
Direction : out
Function : Data output from GPCIe.

36

Port name : slv datain
Type : std logic vector(NLANE*16-1 downto 0)
Direction : in
Function : Data input to GPCIe.

The Application Interface (as a master device)

Port name : ms wrchannel
Type : std logic vector(NDMACH-1 downto 0)
Direction : out
Function : The DMA channel currently occupying the data path for

DMA write, ms wrdata.

Port name : ms write
Type : std logic
Direction : out
Function : When this is asserted, the backend logic should supply data

to ms wrdata in the next clock cycle. Used for DMA write
transfer.

Port name : ms wraddr
Type : std logic vector(31 downto 0)
Direction : out
Function : Local address which current DMA write transaction is read-

ing from.

Port name : ms wrdata
Type : std logic vector(NLANE*16-1 downto 0)
Direction : in
Function : Data input from the backend logic to GPCIe. Used for

DMA write transfer.

Port name : ms rdchannel
Type : std logic vector(NDMACH-1 downto 0)
Direction : out
Function : The DMA channel currently occupying the data path for

DMA read, ms rddata.

37

Port name : ms read
Type : std logic
Direction : out
Function : Indicates data is present on ms rddata. Used for DMA

read transfer.

Port name : ms rdaddr
Type : std logic vector(31 downto 0)
Direction : out
Function : Local address which current DMA read transaction is writ-

ing to.

Port name : ms rddata
Type : std logic vector(NLANE*16-1 downto 0)
Direction : out
Function : Data output from GPCIe to the backend logic. Used for

DMA read transaction.

Port name : int req
Type : std logic
Direction : in
Function : Request an interrupt. See section 5.5 for the usage.

Port name : int ack
Type : std logic
Direction : out
Function : Indicates the completion of an interrupt. See section 5.5

for the usage.

The Application Interface (as a DMA controller)

38

An independent set of interface is provided for each DMA(n) channel, where n is a channel
ID in 0..NDMACH-1. For example, dma control signal for the n-th channel can be accessed
via dma control(n)(6 downto 0). The two-dimensional array types used for the definition
of these signals, such as each7b and each16b are defined in a package gpciepkg.

Port name : dma control
Type : each7b(NDMACH-1 downto 0)
Direction : in
Function : DMA control registers

dma control(n)(0) : Write enable for dma paddrlow in(n)
dma control(n)(1) : Write enable for dma paddrhigh in(n)
dma control(n)(2) : Write enable for dma laddr in(n)
dma control(n)(3) : Write enable for dma size in(n)

Start a DMA transfer when a ’1’ is written.
dma control(n)(4) : Write enable for dma param in(n)
dma control(n)(6) : Stop currently running DMA transfer when a ’1’ is written.

Port name : dma param
Type : each16b(NDMACH-1 downto 0)
Direction : in
Function : DMA parameter registers

dma param(n)(7 downto 0) : Not used.
dma param(n)(8) : Direction of the transfer.

0 : read from the host computer.
1 : write to the host computer.

dma param(n)(15 downto 9) : Not used.

Port name : dma status
Type : each4b(NDMACH-1 downto 0)
Direction : out
Function : DMA status registers

dma status(n)(2 downto 0) : Not used.
dma status(n)(3) : A flag to indicate completion of a DMA transfer.

0 : a transfer is in progress.
1 : no transfer is in progress.

Port name : dma fifocnt
Type : each13b(NDMACH-1 downto 0)
Direction : in
Function : Byte count of a DMA transfer.

For DMA write : The number of bytes the backend logic can supply to GPCIe.
For DMA read : The number of bytes the backend logic can receive from GPCIe.

39

Port name : dma paddrlow in
Type : each32b(NDMACH-1 downto 0)
Direction : in
Function : Lower 32-bit of PCI address at which a DMA transfer starts.

Port name : dma paddrhigh in
Type : each32b(NDMACH-1 downto 0)
Direction : in
Function : Higher 32-bit of PCI address at which a DMA transfer starts.

Port name : dma laddr in
Type : each32b(NDMACH-1 downto 0)
Direction : in
Function : Local address at which a DMA transfer starts.

Port name : dma size in
Type : each32b(NDMACH-1 downto 0)
Direction : in
Function : Size of a DMA transfer (in byte).

Port name : dma paddrlow out
Type : each32b(NDMACH-1 downto 0)
Direction : out
Function : Lower 32-bit of PCI address at which a DMA transfer is in progress.

Port name : dma paddrhigh out
Type : each32b(NDMACH-1 downto 0)
Direction : out
Function : Higher 32-bit of PCI address at which a DMA transfer is in progress.

Port name : dma laddr out
Type : each32b(NDMACH-1 downto 0)
Direction : out
Function : Local address at which a DMA transfer is in progress.

Port name : dma size out
Type : each32b(NDMACH-1 downto 0)
Direction : out
Function : Remaining byte count of a DMA transfer in progress.

40

6.3 Details of Entity phypcs

6.3.1 Header Part

Example :

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

6.3.2 GENERIC Declaration

Parameter name : DEVICE
Type : string
Default value : ”Arria GX”

Function : Targeting FPGA device. Should be set to ”Arria GX” or
”Stratix II GX”.

Parameter name : GENERATION
Type : natural
Default value : 1

Function : Supported speed of the PCI Express link. The values 1 and
2 indicates 2.5GHz (Gen1) and 5.0GHz (Gen2) operation,
respectively.

Parameter name : NLANE
Type : natural
Default value : –

Function : Link width of the PCI Express link. Should be set to 1, 4
or 8.

Parameter name : USE CLK32
Type : natural
Default value : 1

Function : Should be set to 1 whenever possible. You may set this
value to 0 if you cannot supply clk32 input. Then PHY try
to boot without using clk32, at the risk of malfunction.

41

6.3.3 PORT Declaration

Port name : cal blk clk
Type : std logic
Direction : in
Function : A clock input used for transceiver calibration. The clock

frequency can be any value in the range of 10MHz-
125MHz.

Port name : clk32
Type : std logic
Direction : in
Function : A clock input used to generate timing for power on reset

signals. The clock frequency can be any value in the range
of 10MHz-125MHz.

Port name : clk100
Type : std logic
Direction : in
Function : A 100MHz differential input used as a reference clock of

the Gigabit transceivers.

Port name : clk125out
Type : std logic
Direction : out
Function : A 125MHz clock output generated based on clk100 input.

All parallel signals of PHY are synchronized to this clock.

Port name : clk125plllock
Type : std logic
Direction : out
Function : Asserted when internal PLL is locked and clock output from

clk125out becomes stable.

Port name : rstn
Type : std logic
Direction : int
Function : An active low reset signal.

42

Port name : rx in
Type : std logic vector(NLANE-1 downto 0)
Direction : in
Function : Input from the PCI Express high-speed serial receiver port.

Port name : tx out
Type : std logic vector(NLANE-1 downto 0)
Direction : out
Function : Output to the PCI Express high-speed serial transmitter

port.

Port name : wake
Type : std logic
Direction : out
Function : Not used.

The PIPE Interface

Port name : phystatus
Type : std logic
Direction : out
Function : Refer to the specification of the PIPE Interface.

Port name : powerdown
Type : std logic vector(1 downto 0)
Direction : in
Function : Refer to the specification of the PIPE Interface.

Port name : txdetectrx
Type : std logic
Direction : in
Function : Refer to the specification of the PIPE Interface.

Port name : txdata
Type : std logic vector(NLANE*16-1 downto 0)
Direction : in
Function : Refer to the specification of the PIPE Interface.

43

Port name : txdatak
Type : std logic vector(NLANE*2-1 downto 0)
Direction : in
Function : Refer to the specification of the PIPE Interface.

Port name : txelecidle
Type : std logic vector(NLANE-1 downto 0)
Direction : in
Function : Refer to the specification of the PIPE Interface.

Port name : txcompl
Type : std logic vector(NLANE-1 downto 0);
Direction : in
Function : Refer to the specification of the PIPE Interface.

Port name : rxpolarity
Type : std logic vector(NLANE-1 downto 0)
Direction : in
Function : Refer to the specification of the PIPE Interface.

Port name : rxdata
Type : std logic vector(NLANE*16-1 downto 0)
Direction : out
Function : Refer to the specification of the PIPE Interface.

Port name : rxdatak
Type : std logic vector(NLANE*2-1 downto 0)
Direction : out
Function : Refer to the specification of the PIPE Interface.

Port name : rxvalid
Type : std logic vector(NLANE-1 downto 0)
Direction : out
Function : Refer to the specification of the PIPE Interface.

Port name : rxelecidle
Type : std logic vector(NLANE-1 downto 0)
Direction : out
Function : Refer to the specification of the PIPE Interface.

44

Port name : rxstatus
Type : std logic vector(NLANE*3-1 downto 0)
Direction : out
Function : Refer to the specification of the PIPE Interface.

45

7 License

7.1 Lincense for GPCIe DS and GPCIe SP

Permission is hereby granted to any person obtaining a copy of this software and associated documentation
files (the ”Software”), to deal in the Software under the following conditions:

• In no event arising from, or in connection with the Software, shall K&F Computiong Research Co.
be liable for any claim, damages or other liability,

• As a general rule, you are prohibited from using, selling or any activity related to the Software inside
the United States. If you plan to do so, you need to ask the authors for the permission.

• It is not permitted to distribute the Software and its modified version, while products obtained
using them, including netlist and bit-stream data synthesized from them, can be distributed with or
without charge.

• All copies and forks of the Software shall subject to this license agreement.

• The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

7.2 Lincense for GPCIe free-evaluation edition

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the ”Software”), to deal in the Software under the following conditions:

• Any PCI Express interface logic generated by the Software should have vendor ID of K&F Computing
Research Co., 1B1Ah, as its initial value of address 00h of PCI configuration register. User of the
interface logic should not modify the value.

• Any products obtained using the Software, including logics designed with the Software, hardwares
which one of such logics is configured into, and research outcomes obtained using one of such logics
or hardawres, must explicitly describe the fact ”the product is obtained using PCI Express IP Core
GPCIe developed and distributed by K&F Computiong Research Co.”, in the product itself, user’s
guide, published paper, or any substantial part of the product.

• In no event arising from, or in connection with the Software, shall K&F Computiong Research Co.
be liable for any claim, damages or other liability,

• As a general rule, you are prohibited from using, selling or any activity related to the Software inside
the United States. If you plan to do so, you need to ask the authors for the permission.

• All copies and forks of the Software shall subject to this license agreement.

• The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

46

8 Modification History

version date description author(s)
1.4.3 08-Feb-2013 Usage of interrupt function added to the User’s Guide. AK
1.4.2 07-Apr-2012 remote update support for Cyclone IV GX. AK
1.4.1 14-Jan-2012 backend clk dynamical reconfiguration support for AK

Cyclone IV GX.
1.4.0 05-Dec-2011 Stratix II GX Gen2 support integrated (formerly in a separate package). AK
1.3.3 21-Nov-2011 Altera Cyclone IV GX Dev Kit (soft IP Gen1 x1/x4) supported. AK
1.3.2 02-Mar-2011 Altera Cyclone IV GX Starter Kit (soft IP Gen1 x1) supported. AK
1.3.1 10-Aug-2010 Added a function to dynamically reconfigure backend clk AK

frequency (Stratix IV only).
1.3.0 04-Jul-2010 Stratix IV (soft IP Gen1 x1/x4/x8) supported. AK

L0s state added to LTSSM.
1.2.0 06-Mar-2010 Packages for free-evaluation edition and develpment AK

suit integrated. Directory structure changed.
1.1.1 29-Nov-2009 Timing charts added to the User’s Guide. AK
1.0 03-Aug-2009 Several improvements in the logic and the driver. AK
0.8.1 03-Jan-2009 User’s Guide PDF version created. AK
0.8 17-Nov-2008 Logic optimized. AK
0.7 09-Oct-2008 Support for x1. AK
0.6 28-Sep-2008 Support for DMA read. AK
0.5 28-Jul-2008 DMA write performance improved. A. Kawai

User’s Guide created.

Contact address for questions and bug reports:
K&F Computing Research Co. (support@kfcr.jp)

47

